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Abstract

This paper discusses the potential of fuzzy logic methods within medical imaging. Technical

advances have produced imaging techniques that can visualize structures and their functions in the

living human body. The interpretation of these images plays a prominent role in diagnostic and

therapeutic decisions, so physicians must deal with a variety of image processing methods and their

applications. This paper describes three different sources of medical imagery that allow the visualiza-

tion of nerve fibers in the human brain: (1) an algorithm for automatic segmentation of some parts of the

thalamus in magnetic resonance images based on the differences in myelin content in various thalamic

subnuclei; (2) polarized light for classifying the 3D orientation of the nerve fibers at each point; and (3)

confocal laser scanning microscopy (CLSM) for calculating semiquantitative variables for myelin

content. Fuzzy logic methods were applied to analyze these pictures from low- to high-level image

processing. The solutions presented here are motivated by problems of routine neuroanatomic research

demonstrating fuzzy-based methods to be valuable tools in medical image processing.
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1. Introduction

1.1. Medical image processing

Technical advances in medicine have led to the development of a wide range of imaging

procedures, starting with the discovery of X-rays by Roentgen in 1895 and currently

centered on digital image processing.
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Medical imaging—which primarily focuses on anatomy [8,10]—subsumes the proces-

sing and analysis of digital pictures, which show structural or functional aspects of the

human body. The interpretation of these images is an important part of diagnostic and

therapeutic decisions. Physicians must deal with the acquisition, visualization, processing,

and interpretation of digital images. Table 1 gives some examples of different sources of

medical images, ranging from grey scale over color images to sequential stacks of images

and 3D data sets. Most images contain information about the structure of the human body,

but some visualize functional aspects, such as metabolism or blood flow.

The human brain has been imaged frequently, using techniques such as CT, MRI, PET,

or SPECT. The brain consists of two main types of tissue, the gray and the white matter.

Information is processed in the gray matter, while the purpose of the white matter, which

consists of intermingled bundles of fibers, is to carry information from one cerebral region

to another over distances ranging from centimeters to meters. The white matter plays a

significant role in neurosurgery, because lesions of the white matter can produce severe

handicaps.

This paper describes some applications of imaging of the cerebral white matter,

demonstrating questions that can be solved by fuzzy image processing. Fuzzy methods

are only a part of digital imaging procedures, but the use of linguistic variables [18] as

Table 1

Some sources of medical images

Types of images/data sets Types of information Imaging procedure

Gray scale images 2D projection of a volume Radiography

Polarized light microscopy

Fluorescence microscopy

Single slices Computed tomography (CT)

Magnetic resonance imaging (MRI)

Confocal laser scanning microscopy

(CLSM)

Transmission electron microscopy

(TEM)

Ultrasound

Surfaces Raster electron microscopy (REM)

Color images 2D projection of a volume Conventional light microscopy

Colored (functional) data Diffusion tensor maps Diffusion weighted-MRI (DW-MRI)

Blood flow Functional magnetic resonance

imaging (fMRI)

Blood flow Positron emission tomography (PET)

Blood flow, metabolism Single photon emission computer

tomography (SPECT)

Complex data sets Sequential stacks z-series: CLSM, CT, MRI

Time series: CLSM

3D data sets and 3D reconstruction

Multisource information fusion Atlas–patient matching
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descriptions of mathematical functions in natural language facilitates the acceptance of

fuzzy methods in medicine. Furthermore, many ambiguities in medical image processing

can be dealt with by a fuzzy methodology.

1.2. Uncertainties in image processing

Image processing involves acquiring and interpreting these images, as well as comparing

them with each other. Different hierarchical levels of image processing can be distin-

guished [6,16], although they may overlap.

1. Low-level image processing describes the processing of gray values of single pixels,

including optimal settings of image acquisition parameters and improvement of

contrast or brightness by filtering. Overall, low-level image processing provides

images of adequate quality.

2. Intermediate-level image processing detects objects in the image through feature

extraction, segmentation, and skeletonization.

3. High-level image processing, which interprets data contained in the image, deals with

problems of classification, model matching, and linguistic description. In medicine,

the result of such interpretation is generally an image diagnosis.

The methods used in the following examples are quite distinct and application specific,

but they represent problems in central nervous fibers research that may be solved by fuzzy

methods.

2. Three examples of imaging of central nervous fibers using fuzzy-based methods

Our research focuses on white matter in the human brain [1–5], which consists largely of

nerve fibers covered by myelin sheaths. The complex connective architecture of neuronal

cells is important to the function of the central nervous system [11]. Different imaging

routines are used to visualize the white matter of the brain and the myelin sheaths of the

nerve fibers.

2.1. Example 1: myelin content in magnetic resonance images

2.1.1. Problem

In T1-weighted magnetic resonance imaging (MRI) slices, myelin, the fatty component

of the central nervous system, is visualized as bright white. This technique can be used to

distinguish parts of the thalamus [7], which can be subdivided into myelin-rich and myelin-

poor parts. The purpose of this procedure is to automatically segment parts of the thalamus

in the 3D neighborhood of each voxel.

2.1.2. Material and methods

A voxel xi in the MRI data set is characterized by its gray value gðxiÞ in f0; 1; . . . ; 255g.

The voxels xj (j ¼ 1; . . . ; 26) in its 3D (3 � 3 � 3) neighborhood also provide some

information, which may define the central voxel xc as an object, an edge, or as noise.
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Thus, the gray value of the central voxel xc is compared with the gray values of the voxels

xj in the direct neighborhood of xc. The accumulated difference between the central voxel

and all 26 touching, neighboring voxels can be computed as

dðxc; xjÞ ¼
X26

j¼1

jgðxcÞ 	 gðxjÞj

This relationship defines the linguistic variable difference as being small, medium, or large

using the membership functions shown in Fig. 1A. The membership functions were defined

in this way after analysis of the grey scale values of different data sets and the functions

were adjusted by trial-and-error. The horizontal axis is the universe of discourse, defined as

all the possible values of dðxc; xjÞ that can come into consideration. The vertical axis is the

degree of membership mðdÞ. For instance, a value dðxc; xjÞ ¼ 10 is small to the degree 0.75

and medium to the degree 0.25.

In addition, the immediate neighbors of the central voxel relate to each other indepen-

dently of the central voxel. This relationship we call the togetherness of the voxel. The

input y of the linguistic variable togetherness is computed using the function dðxi; xaÞ that

examines whether there is a coherent region acoh of voxels with similar gray values:

acoh ¼ fxajjgðxiÞ 	 gðxaÞj 
 bg; dðxi; xaÞ ¼
Xn

a¼1

jgðxiÞ 	 gðxaÞj

Fig. 1. Membership functions. (A) The membership functions for the linguistic variable difference. (B) The

membership functions for the linguistic variable togetherness. (C) Truth table. (D) The membership functions

for the output instruction.
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where the set acoh is the set of voxels in the 3D neighborhood belonging to a unity of gray

values that have similar values. The value dðxi; xaÞ is the accumulated difference between a

voxel xi in acoh and all n voxels in acoh (including itself, but the difference is zero and does

not contribute). Only if the difference between xi and xa is smaller than a threshold b, the

point xa is counted as a member of acoh. The value of b was set to 8 in this case because

trial-and-error showed that it provided the best results. The togetherness is defined by

means of a function yðxiÞ:

yðxiÞ ¼
m � 255 þ dðxi; xaÞ

ymax

where y is a number in the interval [0, 1] and m is the number of pixels outside of the region

acoh (m ¼ 26 	 n). For normalization, the numerator is divided by the maximum amount

ymax ¼ 26 � 255. Consequently, for m ¼ 26, yðxiÞ ¼ 1, and for m ¼ 0, y approaches zero

when d approaches zero. The togetherness (Fig. 1B) can be described as close if the value y

is rather small and as loose if y is large.

The resulting procedure on the central voxel depends on both difference and together-

ness. A pre-run checks whether all surrounding voxels have large differences (large d) and

close togetherness (large m). In this case, the central voxel is regarded as noise and is

replaced by the voxel with the smallest difference. Otherwise the variables difference and

togetherness are used to derive rules (Fig. 1C), for example:

If difference is small and togetherness is close, then the voxel is treated as object.

The resulting instructions are computed according to the Mamdani controller [9] and the

mean of maxima defuzzification [19]. The membership functions of the input values d and

y determine the antecedent of the different rules. The degree of match ar of the rule r is

achieved by the min-operator (aggregation).

ar ¼ minfmr;pðdÞ; mr;qðyÞg; p 2 fsmall;medium; largeg;
q 2 fclose;medium; looseg; r 2 f1; 2; . . . ;Rg

The membership functions (Fig. 1D) for the output values are then

mcons
r ðxiÞ ¼ minfar; mk

rg; k 2 fnoise; edge; objectg
where mk

r is the membership function of the consequent of rule r, and k is one of the terms:

noise, edge, or object (implication).

From aggregation and implication of the membership functions of the rules, the

resulting membership function of all R rules together is selected by the max-operator

(accumulation)

mresðuÞ ¼ maxr mcons
r ðxiÞ

� �
; r ¼ 1; 2; . . . ;R

Defuzzification is performed by calculating the value gweight by the mean of maximum.

This value gives the weighting factor for the central voxel xc when its gray value, gresðxcÞ, is

calculated:

gresðxcÞ ¼
P27

i¼1gðxcÞgweight þ gðxiÞ
27
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(27 is the number of voxels in the analyzed volume—1 central voxel and 26 neighboring

voxels).

2.1.3. Results

After applying the fuzzy segmentation method, small contiguous regions with voxels of

similar gray value appear, which correspond quite well to the histologically known nuclei

of the thalamus (Fig. 2). This congruence becomes apparent when a digital 3D atlas [15] is

superimposed on the segmented images. Fig. 2A shows a section through the segmented

myelin-rich voxels. In the pons these voxels represent the pontocerebellar fibers and fibers

of the pyramidal tract. The segmented voxels in the thalamus (outlined in dark grey) mainly

represent the ventral nuclei of the thalamus. Fig. 2B shows the atlas projected onto the non-

segmented MRI slice.

Fig. 2C shows a section through the segmented myelin-poor voxels and Fig. 2D shows

the outline of the thalamus as presented in the atlas. The myelin-poor voxels correspond

well to the nucleus dorsomedialis of the thalamus (Fig. 2E), while the myelin-rich nuclei

Fig. 2. Match of voxels isolated by means of fuzzy set application and substructures of the thalamus according

to the atlas. (A) Group of isolated myelin-rich voxels. The outline of the thalamus as represented in the atlas is

shown in dark grey. The nuclei ventrales are shown in bright grey. (B) The atlas as in A projected onto the non-

segmented MRI data set. (C) Group of isolated myelin-poor voxels. (D) Correspondence of parts of the isolated

voxels to the nucleus dorsomedialis of the thalamus. (E) Outline of the thalamus surrounding the myelin-poor

voxels. (F) The myelin-rich nuclei ventrales (in bright grey) are positioned in the spared area of the segmented

voxels. (G) The atlas as in (D)–(F) projected onto the non-segmented MRI data set.
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ventrales are located in the spared area (Fig. 2F). Fig. 2G shows the atlas projected onto the

non-segmented MRI data set.

2.1.4. Discussion of the example

Areas in the thalamus, which cannot be seen in the original MRI data set, were

segmented automatically. Some subnuclei of the thalamus are targets of functional

neurosurgery (e.g. the nucleus ventrointermedius in pharmacoresistant tremor). An atlas

can be projected onto the patient’s brain to calculate the 3D locations of these subnuclei.

An automatic segmentation of myelin-rich and myelin-poor parts of the thalamus can be

used to evaluate the correctness of the fit of the atlas to the individual brain.

Procedures for segmentation using crisp thresholds did not lead to acceptable results.

Fuzzy methods were applied in this case because rules could be described using natural

language. The solution had two effects: the algorithm detects noise and suppresses it, and a

3D segmentation is performed simultaneously. The idea of using the myelin content in the

different thalamic nuclei to map this area came from expert anatomical knowledge. The

tool for expressing this knowledge was the fuzzy rule base.

2.2. Example 2: 3D orientation of central nervous fibers using polarized light

2.2.1. Problem

Researchers have studied the architecture of the cerebral white matter in the human brain

since the beginning of the last century [13]. The 3D orientation of nerve fibers in the brain

can help define these fibers as parts of distinct functional systems [3,4]. The course and

location of fiber tracts in the brain is very important in neurosurgical procedures because

damage to these tracts can cause severe handicaps in the patient.

To generate maps of the 3D orientation of nerve fibers automatically, the physical

principle of polarized light microscopy was applied. In plane-polarized light, the electro-

magnetic waves of the light are oriented in a single plane. Light becomes plane-polarized

by passing through a polarization filter (polarizer) before it passes through the sample.

Anisotropic structures in the sample, which show different measurements when measured

in different directions, bend the light so that it can pass through a second polarizing filter

(analyzer) perpendicular to the first polarization filter and can be imaged. The amount of

light bent depends on the amount and spatial orientation of the anisotropic tissue. Radially

oriented lipids in the myelin sheaths of the nerve fibers cause birefringence, a refraction of

light to form two rays from one. Thus, order and orientation of the fibers determine the

polarization picture of the section under different rotation angles of the polars (azimuth).

2.2.2. Material and methods

Unstained sections of formalin-fixed and polyethylene glycol (PEG)-embedded human

brains were used for this purpose. The slices, 100 mm thick, were placed in a fixed position

between two rotatable, crossed polarizing filters and illuminated. A digital camera took

nine pictures of the section under azimuths from 0 to 808, and a set of nine grey scale values

of light intensity (g0 to g80) was assigned to each point in the section:

Axy ¼ fg0ðxyÞ; g10ðxyÞ; . . . ; g80ðxyÞg
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The grey scale values were normalized by dividing by 255, chosen because it is simple. The

settings of the imaging system, such as brightness and contrast, were adjusted at first so that

the histograms of the pictures spanned the entire interval of grey scale values ranging from

0 to 255 as in the function fangleðxyÞ:

fangleðxyÞ ¼ gangleðxyÞ
255

~Axy ¼ ff0ðxyÞ; f10ðxyÞ; . . . ; f80ðxyÞg
The nine intensity values contain information about the 3D orientation of the nerve fibers at

this point. The inclination of the fibers is defined as the elevation of the fibers in the

z-direction of the section, while the direction describes the orientation of the fibers in the

xy-plane of the section.

Fuzzy logic methods were applied to classify the inclination of fibers [2]. Two

interesting parameters (Fig. 3A) were defined in the sequence of measurements, which

give information about the inclination of the fibers at each point. The brightest intensity in

the sequence is one parameter. The flatter the fibers’ orientation, the brighter the pixels are

under a certain azimuth or, conversely, as fibers get steeper the brightest pixel becomes less

bright.

In contrast, the flatter the fibers run, the more accentuated the peak will be, so the second

parameter is defined as the width of the peak. A threshold value (0.6), determined by testing

different values, was defined to eliminate low intensities. Both intensity and peak-width

were described by fuzzy variables. Peak-width was defined as none, narrow, and broad

Fig. 3. Intensity values and linguistic variables. (A) Intensity values under rotation of the polars (x-axis). (B)

Linguistic variable peak-width. (C) Linguistic variable intensity. (D) Truth table.
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using the functions in Fig. 3B. The four descriptions of intensity were defined as dark, less

dark, less bright, and bright, and were calculated according to the graphs in Fig. 3C.

The classes of fiber inclination are steep, less steep, less flat, and flat. The method

also detects pixels containing no fibers, e.g. in the gray substance or the ventricular system.

The relations are defined in the truth table shown in Fig. 3D. The truth table describes

rules such as

If the highest intensity is bright and the peak-width is narrow, then the course of fibers

will be flat.

Such rules can be mathematically processed as the minimum value of the membership

functions of intensity (bright) and peak-width (narrow).

mflat ¼ minðmbright; mnarrowÞ

Defuzzification is done by searching the rule with the highest membership function and

classifying each pixel according to the fiber inclination at the respective point. The classes

of fiber inclination are visualized as different grey scale values.

This method also allows definition of areas of the cerebral gray matter. This classifica-

tion can be done very easily, because all nine intensities have to be dark. Thus, the

membership function of a pixel belonging to the gray matter can be defined as

mgrey	matter ¼ minðmdarkð0�Þ; mdarkð10�Þ; . . . ; mdarkð80�ÞÞ

In addition, the direction of the nerve fibers is represented by that azimuth where the lowest

intensity of light can be measured (when using a quarter-wave plate as additional filter).

Thus, both inclination and direction can be assessed automatically in each point of the

section.

2.2.3. Results

Fig. 4A shows a fiber inclination map. The four classes of inclination are visualized as

increasing grey scale values. Black indicates that no fibers are located at this point (gray

matter, no brain tissue, artifacts). A fiber direction map of the same section can be seen in

Fig. 4B. Here, the angles of direction (0–1808) are shown as increasing grey scale values;

08 means that the fibers are oriented parallel to the x-axis of the picture.

Inclination and direction are also shown in arbitrarily selected points in the section using

lines (Fig. 4C). The direction of each line shows the direction of the fibers, and the class of

inclination determines the length of the line. Different grey scales represent different tracts

of fibers.

2.2.4. Discussion of the example

The two parameters, namely the height and the width of the intensity peak, seem to be

related: the broader the peak, the lower the height. This is the case for pixels that represent

fibers, but many pixels represent other tissues such as gray matter, ventricle, and artifacts

caused by crystals from the histological preparation. Thus, height and width of the intensity

peak are well suited to detect artifacts in the images because here height and width are not

related. Moreover, the use of both parameters makes the algorithm very robust. The

polarization effects of the tissue are dependent on parameters such as thickness of the
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slices, magnification, and contrast. The use of this rule-based system allows the visualiza-

tion of fiber orientation in variable settings of the imaging system and thus is a tool for fast

visualization of the fiber structure [2]. This fuzzy system is useful for both a rough

classification of fiber inclination and the classification of gray matter and artifacts.

2.3. Example 3: myelin content in confocal laser scanning microscopic images

2.3.1. Problem

Confocal laser scanning microscopy (CLSM) produces optical sections through a

fluorescent sample. In CLSM, sequential scanning by a laser measures the fluorescence

in these voxels [17]. So-called z-series of optical sections, a sequence of specimen sections

along the z-axis perpendicular to the xy-plane, can be used to perform 3D reconstruction of

the nerve fibers [3].

Nerve fibers can be labeled with fluorescent, lipophilic carbocyanine dyes (e.g. 1,10-
dilinoleyl-3,3,30,30-tetramethylindocarbocyanine perchlorate (DiI)), which diffuse into all

lipophilic structures in the sample, e.g. the myelin sheaths. These confocal images

represent measurements of the fluorescent dye in each pixel, so the architecture of the

myelinated fibers in the brain can be imaged exactly (Fig. 5).

Another physical method, electrical impedance, can show the architecture of myelinated

fibers at the tip of an electrode. In functional neurosurgery, impedance measurements can

Fig. 4. A sagittal section through the human brain. (A) Inclination of the fibers is visualized as different grey

scale values. (B) Direction of the fibers is shown as different grey scale values (08 means the fibers are oriented

parallel to the x-axis of the picture). (C) Different selected fiber tracts are shown as lines. Different grey scale

values represent different systems of fibers. The direction of the line shows the direction of fibers while the

length of the line shows the inclination of fibers. Scalebar: 10 mm.
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be used to evaluate intraoperatively if the stereotactic needle is positioned correctly in the

brain [5]. The following procedure was used to demonstrate the correlation between tissue

impedance and the myelin content in the brain.

2.3.2. Material and methods

Impedance was measured at 12 characteristic points in a formalin-fixed human brain

(Fig. 6A) over a wide range of frequencies (102 to 106 Hz). These points were then

inoculated with the fluorescent marker DiI (FAST DiI# oil, Molecular Probes Europe BV,

Leiden, The Netherlands), so that the architecture of fibers could be visualized by CLSM

(Leica TCS NT, Leica Microsystems, Heidelberg, Germany).

The confocal images were normalized (by dividing the grey scale values gðxÞ by

255):

f ðxÞ ¼ gðxÞ
255

Each value f ðxÞ represents the intensity of fluorescence at point x. The calibration of the

imaging system was maintained to ensure a constant relationship between the measure-

ments in the pixels and the intensity of fluorescence in the probes. Other procedures of

normalization, such as z� ¼ ðz 	 zminÞ=ðzmax 	 zminÞ (with z as the current pixel value, zmin

as the minimum, and zmax as the maximum gray levels of the image), or the use of Zadeh’s

Fig. 5. (A) Cerebral white matter, original picture. (B) Fig. 1A after filtering: the cell nucleus has been

diminished, and the nerve fibers have been accentuated. (C) Cerebral gray matter. (D) Fig. 1C after filtering.
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standard S-function [16] would disturb the linear relationship between gray value and

amount of fluorescence.

The values of f ðxÞ were used to estimate the myelin content in the tissue. The highest

intensity of fluorescence is caused by the myelin sheaths, but a certain amount of low-

intensity fluorescence is caused by other lipophilic cell organelles such as the membrane of

the cell nucleus. Consequently, the original confocal images have to be modified and the

following intensity-modifier (contrast intensification, see, e.g. [16,19]) was used:

mðxÞ ¼ 2½ f ðxÞ�2; if 0 
 f ðxÞ 
 0:5
1 	 2½1 	 f ðxÞ�2; else

�

This intensity-modifier was chosen, because it allows low-intensity fluorescence to

decrease, while high-intensity fluorescence specific for myelin is increased (Fig. 5), by

substituting mðxÞ for f ðxÞ, which better describes the content of myelin than f ðxÞ does.

To arrive at a semiquantitative variable representing the content of myelin in the sample,

the variable areazðmÞ was calculated as a summation of all grades of membership [12]:

areazðmÞ ¼
X65 536

i¼1

mðxiÞ

Thus, for each point z of impedance measurement, areazðmÞ represents the content of

myelin at point z. The domain of pixels over which areazðmÞ is calculated has to be kept the

same shape for comparability. In this example it was defined as a matrix of 256 � 256

(65 536) pixels. All areas areazðmÞ from all samples were correlated to measurements of

electrical impedance, and the local maximum of the graph of impedance measurements

was chosen as a characteristic parameter, a feature (Fig. 6A).

2.3.3. Results

The Pearson correlation coefficient between the value of the reactant part of impedance

measured at the local maximum of the impedance graph (Fig. 6A) and variable areazðmÞ
was 0.737 (P ¼ 0:01, Fig. 6B). The number of impedance measurements analyzed here

was 12. This result shows that impedance depends on the myelin content, but impedance

Fig. 6. (A) Impedance measurement in the central nerve tissue performed from 102 to 106 Hz (x-axis). The

reactant part of impedance (in O) at the local maximum was chosen as characteristic parameter. (B) Correlation

between variable areazðmÞ, which resembles the myelin content, and the maximum value of the impedance graph.
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values are also dependent on other parameters such as the orientation of the fibers in

relation to the electrode [5].

2.3.4. Discussion of the example

The relationship between myelinization and electrical impedance is not new. Electrical

impedance also depends on density of fibers, cells, electrolyte concentration, and the

orientation of the fibers in relation to the electrode [5]. Thus, a semiquantitative variable of

myelin content represents only one parameter influencing impedance measurement.

Impedance also depends on the frequency of the injected sinusoidal signal; its relationship

to amplitude remains to be investigated. Nevertheless, in neurosurgical environments only

measurements at 50 000 Hz are commonly used for defining the borders of different tissues

in the brain. However, at this reference frequency, the impedance measurements do not

represent the properties of the tissue (for example, the content of myelin) as well as the

reference demonstrated here does [5]. This can be demonstrated by comparing histological

tissue properties with impedance measurements at different frequencies [5]. The example

presented here demonstrates low-level image processing and the use of a fuzzy method is a

legitimate solution of the problem.

3. Discussion and conclusion

The three examples presented, all use different imaging methods: CLSM, MRI, and

polarized light microscopy. All methods investigated the same object, the cerebral white

matter. Processing of these digital images led to new insights into this field of brain

research.

Fuzzy methods were applied from low- to high-level image processing. These methods

represent only a small range of fuzzy methods. Awider selection of fuzzy techniques can be

used in image processing [14,16,19], including fuzzy clustering and fuzzy integrals.

The third example demonstrates an application of low-level image processing. A fuzzy

filter was used because the border between high-intensity fluorescence and low-intensity

fluorescence cannot be defined as crisp. This uncertainty was handled by fuzzy methods.

The other examples represent intermediate- to high-level image processing. Here, fuzzy

logic was used to classify voxels in a 3D MRI data set or pixels in sequences of polarized

light images. The advantage of linguistic variables is their potential for generating rules in

natural language without using mathematical functions, especially in cases where the exact

mathematical function is not known.

The classification of pixels according to the inclination of fibers using fuzzy logic turned

out to be very robust. Of course, a crisp mathematical model can be described for the

birefringent features of nerve tissue. However, the polarized light images depend heavily

on contrast, brightness, magnification, and thickness of the sample. These settings must be

kept constant in order to use the crisp mathematical model reliably. In contrast, the fuzzy

model can be used to image different magnifications of the sections.

The three examples are quite distinct and application specific, and they represent

procedures motivated by problems of routine neuroanatomic research. Thus, it would be

very helpful for medical environments to have more general software tools that support the
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application of fuzzy methods to medical image processing. Physicians who are not familiar

with mathematical formulas would find it helpful to use natural language in the description

of biological objects [1].

There are several advantages to using fuzzy methods for medical image processing.

Digital images represent data sets that are not fundamentally different from other

databases. Relationships and patterns in these data sets must be extracted in order to

make a diagnosis. However, a high level of medical expertise is necessary to interpret

medical images. Gray scale medical images are fuzzy because they are defined on an

interval that can be scaled to [0, 1], and borders between objects are often fuzzy. These

uncertainties, including noise, can be processed with fuzzy methods, but it must be

understood that the digital images themselves are fuzzy.

Acknowledgements

Some of this work was supported by ERUDIT (http://www.erudit.de), a European

network in uncertainty techniques developments for use in information technology,

supported by the European Commission.

References
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