
Integration of Spatial Relationships in Visual Language Model
for Scene Retrieval

Trong-Ton Pham, Philippe Mulhem, Loı̈c Maisonnasse, Eric Gaussier, Ali Aı̈t-Bachir
Computer Science Laboratory Grenoble - LIG
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Abstract

In this paper, we describe a method to use a graph-based
language modeling approach for image retrieval and im-
age categorization. We first mapped image regions to in-
duced concepts and then spatial relationships between these
regions to build a graph representation of images. Our
method allows to deal with different scenarii, where iso-
lated images or groups of images are used for training and
testing. The results obtained on an image categorization
problem comprising of 3849 images from 101 landmarks of
Singapore show that (a) the procedure to automatically in-
duce concepts from an image is effective, and (b) the use of
spatial relationships, in addition to concepts, for represent-
ing an image content helps improve the classifier accuracy.
This approach is the first one, to our knowledge, to present
a complete extension of the language modeling approach
from information retrieval to the problem of graph-based
image categorization and retrieval.

1 Introduction

After almost 20 years of research in image retrieval and
categorization, the domain is still considered as a great chal-
lenge for computer scientists. Problems arising with image
indexing, image retrieval and image categorization are re-
lated to the semantic gap, and the way one can represent an
image content. Besides this inherent difficulty, another di-
mension of interest is the fact that images are usually related
to other images. For instance, all the digital cameras do now
integrate the date and time of shooting and this information
may be used to group them [9]. In addition, geo-localization
information may be used [3] also. Therefore, groups of im-
ages may also be an interest approach for image indexing
and retrieval. We show that the use of language modeling
may extend smoothly to multiple image queries and multi-
ple trained images, and that such an approach is robust with

respect to the differences between these groups of images.
Several works have considered the use of spatial rela-

tionships between image regions. For instance, image de-
scriptions expressed by 2D strings as in the Visualseek sys-
tem [11] capture sequences of occurrences of objects along
one or several reading directions. However, a retrieval based
on 2D strings is complex, as it requires matching substrings,
which is a costly operation. To overcome this problem, sev-
eral heuristics to speed up the process have been proposed,
as the one described in [1] which results in a process of 10
times faster than the original one.
Other works have considered relationships between im-

age regions in a probabilistic model, e.g. through the use of
2D HMMs, as in [4]. However, these works focus on image
annotation, and do not consider relations at retrieval time.
Other attempts have concentrated on conceptual graphs [7]
for image indexing and retrieval. However, taking into ac-
count explicit relationships may generate complex graphs
representations, and the retrieval process is likely to suffer
from the complexity of the graphmatching process [8]. One
of our concern here is to be able to represent images using
graphs, without suffering from the burden of computation-
ally expensive matching procedures. One solution is then to
take benefits from existing approaches in the field of infor-
mation retrieval.
The language modeling approach in information re-

trieval exists from the end of the 90s [10]. In this frame-
work, the relevance status value of a document for a given
query is estimated by the probability of generating the query
from the document. Even though this approach was origi-
nally proposed for unigrams (i.e. isolated terms), several
extensions have been proposed to deal with n-grams (i.e.
sequences of n terms) [12], and, more recently, with rela-
tionships between terms and graphs. Thus, Gao et al. [2]
proposes (a) the use of a dependency parser to represent
documents and queries, and (b) an extension of the language
modeling approach to deal with such trees. Maisonnasse [6]
further extend this approach with a compatible model for
general graphs, as the ones obtained by a conceptual anal-



ysis of documents and queries. We rely here on this latter
models, however extending it by (a) applying it to an im-
age collections, and (b) considering that both concepts and
relations can be weighted.
The remainder of the paper is organized as follows: sec-

tion 2 presents the visual language model used to describe
image content, as well as the matching procedure used
to compute the similarity between images; section 3 then
presents and discusses the results obtained with our ap-
proach in categorizing of 101 classes; we finally conclude
in section 4.

2 Language Modeling for Image Correspon-
dence

2.1 Image modeling with visual graphs

Our goal here is to automatically induce, from a given
image, a graph that represents the image content. Such a
graph will contain concepts directly associated with the el-
ements present in the image, as well as relations which ex-
press how concepts are related in the image. To do so, our
procedure is based on four main steps:

1. Identify regions within the image that will form the
basic blocks for concept identification.

2. Index each region with a predefined set of features.

3. Cluster all the regions found in the collection in K
classes, each class representing one concept. At the
end of this step, each region in the image is represented
as a concept, namely the class to which the region be-
longs. The set of concepts, C, thus corresponds to the
set of classes obtained.

4. Finally, extract relations between concepts.

The first step, region identification, can be based on an arbi-
trary division of equal size, non-overlapping regions (such
as dividing the image into 5 × 5 blocks) or on regions de-
fined around interest points (such as SIFT points1). The
second step aims at representing each region as set of vec-
tor for clustering purposes. The features we have retained
in this paper are HSV color features, which can be easily
and efficiently extracted. We rely on k-means algorithm for
the third step, as it is a standard in image retrieval, well
understood clustering procedure, but other methods can be
used as well. Lastly, the fourth step yields a set of con-
cepts related through certain relations. In this work, we fo-
cus on spatial relations, which are characterized by top of
and left of (see figure 1). At the end of this procedure, one

1in such a case, regions may overlap.

Figure 1. Example of spatial relationships ex-
tracted from one image.

gets a set of related concepts to represent each image. Fur-
thermore, as a concept may appear several times in an im-
age (when different regions of the image are assigned to the
same cluster, as is typical for regions describing for exam-
ple a sky or a sea), each concept is associated with a weight
that represents its number of occurrences in the image. Sim-
ilarly, each relation is given a weight corresponding to the
number of times the relation was observed between the two
concepts in the image.
In the remainder, we will denote set of weighted con-

cepts used to represent a given image by WC . WC is de-
fined on (C × N). Each association between any two con-
cepts c and c′ is directed and is represented by a triplet
< L(c, c′), l, n(c, c′, l) >, where L(c, c′) represents the fact
that there exists, in the image, a spatial relation between
the two concepts (in which case L(c, c′) = 1) or not (in
which case L(c, c′) = 0), l represents the label of the asso-
ciation between the two concepts, and n(c, c′, l) represents
the number of times the two concepts are connected in the
image with label l. We consider here that the possible la-
bels expressing a spatial relation between two concepts are
either top of or left of. The converse relations are implicitly
captured as the associations we consider are directed. In
the case where L(c, c′) = 0, i.e. there is no spatial relation
between the concepts, then l = ∅ by definition.
Finally, the graph representing an image is defined as

G =< WC , WE >, where WC represents the set of
weighted concepts defined previously, and WE the set of
triplets < L(c, c′), l, n(c, c′, l) > defined for each concept
pair in WC . L is an application from C × C to {0, 1}, l
is an element of {top of, left of, ∅} and n(c, c′, l) is the
number of times the particular association holds in the im-
age.

2.2 A language model for graph matching

Our matching function is based on the standard language
modeling approach [10], extended so as to take into account
the elements defined above. To differentiate the images
taken into account during the matching process, we will re-
fer to one of the images (or potentially to one set of images)
as the document, and to the other one as the query.



The probability for a query graph Gq =< W q
C , W q

E >
to be generated by the document modelMd is then defined
by:

P (Gq|Md) = P (W q
C |Md) × P (W q

E |W q
C , Md)

For the probability of generating query concepts from the
document model (P (W q

C |Md)), we rely on the concept in-
dependence hypothesis, standard in information retrieval
and categorization. The number of occurrences of the con-
cepts (i.e. the weights considered previously) are naturally
integrated through the use of a multinomial model, leading
to:

P (W q
C |Md) ∝

∏

c∈C

P (c|Md)
n(c,q)

where n(c, q) denotes the number of times concept c oc-
curs in the graph representation of the query. The quantity
P (c|Md) is estimated through maximum likelihood (as is
standard in the language modeling approach to IR), using
Jelinek-Mercer smoothing:

P (c|Md) = (1 − λc)
Fd(c)

Fd(.)
+ λc

FD(c)

FD(.)

with Fd(c) representing the weight of c in the graph rep-
resentation of the document, and Fd(.) being equal to∑

c Fd(c). The functions FD are similar, but defined over
the whole collection (i.e. over the union of all the graphs
from all the documents of the collection). The parameter
λc corresponds to the Jelinek-Mercer smoothing. It plays
the role of an IDF2 parameter, and helps taking into account
reliable informationwhen the information from a given doc-
ument is scarce. We follow a similar process for the associ-
ations, leading to:

P (W q
E |Md) ∝

∏

(c,c′)∈C2

P (L(c, c′), l|W q
C , Md)

n(c,c′,l,q)

The quantity P (L(c, c′) = x, l|W q
C , Md) can be decom-

posed as the probability of generating a particular type of
association (x = 0 or 1) and then as the probability of using
a particular label l to annotate the association. This amounts
to:

P (L(c, c′) = x, l|W q
C , Md) =

P (L(c, c′) = x|W q
C , Md) × P (l|L(c, c′) = x, Md)

The two quantities appearing in the right-hand side of the
above equation are then directly estimated through maxi-
mum likelihood. For the first quantity, we have:

P (L(c, c′) = x|W q
C , Md) =

(1 − λr)
xFd(c, c′, R) + (1 − x)Fd(c, c′,¬R)

Fd(c, c′, R) + Fd(c, c′,¬R)
+

λr
xFD(c, c′, R) + (1 − x)FD(c, c′,¬R)

FD(c, c′, R) + FD(c, c′,¬R)

2Inverse Document Frequency

where Fd(c, c′, R) represents the number of times c and
c′ are related through a spatial relation in the document,
whereas Fd(c, c′,¬R) represents the number of times they
are not related through a spatial relation. Again, a smooth-
ing is used based on the whole collection (and the associ-
ated functions FD). The probability for a particular label is
estimated in the same way:

P (l|L(c, c′) = 1, Md) =

(1 − λl)
Fd(c, c′, l, R)

Fd(c, c′, ., R)
+ λl

FD(c, c′, l, R)

FD(c, c′, ., R)

For x = 0, the only possible label is ∅ , so that the prob-
ability of this label given x = 0 is 1. The definitions of the
functions Fd and FD in the above equations are similar to
the ones seen previously, but concern labels.
The model we have just presented is inspired by the

model defined in [6]. It differs however from it in (a) we
propose in this paper a complete methodology for automat-
ically indexing images at a conceptual level, and (b) it takes
into account weights on each concept and association. As
the weights are integers, we relied on multinomial distri-
butions for the underlying generative process. The consid-
eration of real-valued weights would lead to consider con-
tinuous distributions instead of the multinomial one. We
are now going to illustrate the behavior of our model in the
context of image categorization.

3 Experiments

We want to illustrate here the validity of our approach
within an image classification task. In particular, we want
to assess (a) the well-foundedness of the conceptual index-
ing method we have retained, as well as (b) the usefulness
of spatial relationships for a better characterization of im-
age content. We also show that our overall methodology is
robust with respect to the changes in the usage scenarii.

3.1 The STOIC-101 collection

The Singapore Tourist Object Identification Collection is
a collection of 3849 images containing 101 popular tourist
landmarks (mainly outdoor). These images were taken,
mainly from a consumer digital cameras in a manner typical
of a casual tourist, from 3 distances and 4 angles in natural
light, with a mix of occlusions and cluttered background
to ensure a minimum of 16 images per scene. Images in the
collection are affected by different weather patterns and dif-
ferent image capturing styles. For experimental purposes,
the STOIC-101 collection has been divided into a training
set containing 3189 images (82.8% of the collection) and
a test set containing 660 images (17.15% of the colelction).
The average number of images per class for training is 31.7,



Figure 2. Interface of searching engine with
an image query of Merlion statue.

and 6.53 for testing. In the test set, the minimum number of
images per class is 1, and the maximum 21.

The main application of STOIC collection is a web-
based image search engine. An user can upload an image
and post it as query to the system. On the server side, the
images from the 101 scenes of the STOIC collection are
matched against the user query. The search engine architec-
ture is two folds: a) the query process server takes a query
image as input and generates a query graph file b) the lan-
guage model server receives the query graph and computes
the matching function based on trained graphs. The results
are sent back to the query process server and an user can
visualize these result images. The mean execution time for
one query image is about 2 seconds. However, the engine
can be optimized and be removed some intermediate steps
to accelerate the processing time.

As an user can take one or several images of the same
scene and query the system accordingly, we have consid-
ered several usage scenarii. Table 1 summarizes these dif-
ferent scenarii (a scene (S) corresponds to a group of images
and a single image (I)). Note that some images in the collec-
tion have been rotated into the correct orientation (for both
portrait and landscape layouts).

Training by (I) Training by (S)
Query by (I)

√ √

Query by (S)
√ √

Table 1. Summary of experiments on STOIC-
101 collection

3.2 Indexing images with concepts and
spatial relationships

Several studies on the STOIC collection have shown that
color plays a dominant role, and should be preferred over
other visual features as edge features or texture [5]. Further-
more, color features can be easily and efficiently extracted.
For these reasons, we rely, for our methods, on HSV color
features only.
In order to assess the validity of our methodology, we

followed different ways to (a) divide each image into re-
gions and (b) assign each region with a concept. For the
division of images into regions, we retained:
1. A fine-grained division where a region corresponds to
one pixel. We refer to this division as fg.

2. A division of medium grain, where blocks of 10x10
pixels are used, the center pixel being considered as a
representative for the region. We refer to this division
as mg.

3. A gross division where the image is divided into 5x5
regions of equal size. We refer to this division as gg.

For the fg and mg divisions, we first respectively quan-
tized each RGB (red, green, blue) and HSV (hue, saturation,
value) channel values into 8 bins of equal size (from 0 to
64). This yielded a 512 (8x8x8) dimensional binary vector
for each region. Each dimension corresponds to a concept
(defined according to the bins) whereas the coordinate on
each dimension corresponds to the presence (1) or absence
(0) of the concept in the region. The global image is then in-
dexed by the sum of all region vectors. We will refer to the
indexing thus obtained as fg-PreCon and mg-PreCon, resp.
for “division fg with predefined concepts” and “division mg
with predefined concepts”. The rationale for doing so is to
assess the validity of the clustering method we proposed in
section 2 for identifying concepts in the collection. In the
above setting, concepts are arbitrarily defined through bins,
whereas in the following ones, they are identified through
unsupervised clustering, as described in section 2.
For mg (again) and gg divisions, we clustered the HSV

feature vectors of all regions into k = 500 classes with k-
means. This results in a hard assignment of each region to
one class/concept. The set of weighted concepts, WC , is
then obtained by counting how many times a given concept
occurs in the image. The choice of k = 500 is motivated by
the fact that we want a certain granularity in the number of
concepts used to represent an image. With too few concepts,
one is likely to miss important differences between images,
whereas too many concepts will tend to make similar im-
ages look different. We will refer to the indexing obtained
in this way as mg-AutCon and gg-AutCon, resp. for “divi-
sionmgwith automatically induced concepts” and “division
gg with automatically induced concepts”.



Training Query fg-PredCon mg-PredCon mg-AutoCon mg-AutoCon-Rel gg-AutoCon gg-AutoCon-Rel
I I 0.687 0.670 0.789 0.809(+2.5%) 0.484 0.551(+13.8%)
I S 0.653 0.65 0.822 0.851(+3.6%) 0.465 0.762(+63.8%)
S I 0.409 0.402 0.529 0.594(+12.3%) 0.478 0.603(+26.1%)
S S 0.940 0.940 1.00 1.00 0.891 0.920(+3.2%)

Table 2. Impact of spatial relations on the performance (best results are in bold, relative improvement
over the method without relations is in parentheses)

In addition, for the methods mg-AutoCon and gg-
AutoCon, we extracted the spatial relations between con-
cepts mentioned previously: left of and top of, and counted
how many times two given concepts are related through a
particular relation in order to get weights for our relations.
This last step provides a complete graph representation for
images. We will refer to these two complete methods as
mg-AutoCon-Rel and gg-AutoCon-Rel.
Last but not least, to classify query images in the 101

scenes, we used, for all indexing methods, the language
model for visual graphs presented in section 2. This sim-
ilar to using a 1-NN classifier, with the “similarity” defined
by equation 1 (and its development). When there is no rela-
tion, the term P (wq

E |Md) equals 1 (see equation 2.2) so that
only concepts are taken into account to compare images.

3.3 Experimental results

The performance of the different methods was evaluated
using the accuracy, per image or per scene. They both are
defined as the ratio of correctly classified images or scenes.
More precisely:

Image accuracy =
TPi

Ni
, Scene accuracy =

TPs

Ns

where TPi, respectively TPs, represents the number of im-
ages (resp. scenes) correctly classified. Ni is the total num-
ber of test images (i.e. 660 images), and Ns the total num-
ber of scenes (i.e. 101 locations).
Table 2 displays the results we obtained when using pre-

defined (through bins) or automatically induced (through
clustering) concepts. As one can see, automatically induc-
ing concepts with a medium grain division of the image
yields the best results (the difference with the gross grain
division for the S-I scenario being marginal). Another in-
teresting point to note on table 2 is that the gross grain di-
vision method does not help generalize, over the medium
grain one. In particular, the S-I and I-S scenarii in a way cor-
respond to degenerate usages of the system, as the training
and testing material are not the same. It is beneficial, in such
cases, to abstract away from a strict description of images
so as to be able to generalize to “new” test data. The evo-
lution of the accuracy of the fg-PredCon and gg-AutoCon-

Rel methods illustrates this: The accuracy for the I-S and
S-I scenarii is better than the one for the I-I scenario for
gg-AutoCon-Rel, whereas it is worse for fg-PredCon (this
latter fact being also true for the mg-PredConmethod, even
though the difference is less marked, as one would expect).
The fg-PredCon method, relying on an indexing which is
very close to the original image, is not able to generalize
well to new usages.
This being said, there is a difference between the I-S and

S-I scenarii: The system is queried with more information
in the I-S scenario than in the S-I scenario. This difference
results in a performance which is, for all methods, worse
for the I-S scneraio than for the other ones. We conjecture
that this is why the results obtained for the mg-AutoCon-
Rel method on S-I are not as good as the ones for I-I. There
seems to be a plateau for this scenario around 0.6, an hy-
pothesis we want to explore in future work.
We finally assessed the usefulness of spatial relation-

ships by comparing the results obtained with the different
methods that include or not such relations. These results
are displayed in table 2. As one can note, except for the S-S
scenario with the mg division, the use of spatial relations
always improve the accuracy of the classifier. This justifies
the framework we developed in section 2 of languagemodel
for visual graphs including automatically induced concepts
and spatial relations between them.

4 Conclusion

We have introduced in this paper a new model for match-
ing graphs derived from images. The graphs we have cap-
tured spatial relations between concepts associated with re-
gions of an image. On a formal side, our model fits within
the language modeling approach to information retrieval,
and extends previous proposals based on graphs. On a more
practical side, the consideration of regions and associated
concepts allows to gain generality in the description of im-
ages, a generality which may take benefit when the usage
of the system slightly differs from its training environment.
This is likely to happen with image collections, for exam-
ple, use one or several images to represent a scene. On the
other hand, querying a specific location with a group of im-
ages is very promising in future application (such as mobile



localization) that allows higher accuracy rate with less com-
putational effort comparing to video sequence.
The experiments we have conducted aim at assessing the

validity of our approach with respect to these elements. In
particular, we showed that integrating spatial relations to
represent images led to a significant improvement in the re-
sults. The model we have proposed is able to adequately
match images and sets of images represented by graphs.
Furthermore, we showed that the representation based on
concepts and relations between them is less sensitive to a
change in the usage than one based on pixel-level features.
As we conjectured, being able to abstract away from a low
level description allows robustness with respect to the usage
scenarios. The price to pay for this robustness is that the
representation, which can be seen as recall oriented, does
not provide as good results as a low level, less general rep-
resentation when the usage scenario directly parallels the
training one. The best strategy to follow is thus to adopt the
low level representation when the usage scenario is identi-
cal to the training one, and the high level one in the other
cases.
In the future, we plan on using the graph model defined

here with different divergence measures. The framework
we have retained is based on the Kullback-Leibler diver-
gence. However, the Jeffrey divergence has also been used
with success on image collections, and could be used to re-
place the Kullback-Leibler one. We also wish to investigate
different possible coupling of the low level and high level
representations, with the will to come up with a single rep-
resentation that could be used in all cases.
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