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Abstract

Content-based image indexing and retrie¢@BIR) system needs to consider
several types of visual features and spatial informatioaragrthem (i.e., different
point of view$ for better image representation. This thesis presentsval no
approach that exploits an extension of the language magealpproach from
information retrieval to the problem of graph-based imaggeval. Such versatile
graph model is needed to represent the multiple points e¥s/@&f images. This
graph-based framework is composed of three main stages:

Image processing stagems at extracting image regions from the image. It
also consists of computing the numerical feature vectseaated with image
regions.

Graph modeling stageonsists of two main steps. First, extracted image re-
gions that are visually similar will be grouped into clustesing an unsupervised
learning algorithm. Each cluster is then associated witlisaal concept. The
second step generates the spatial relations between th& wsncepts. Each
image is represented by a visual graph captured from a sesoélvconcepts
and a set of spatial relations among them.

Graph retrieval stages to retrieve images relevant to a new image query.
Query graphs are generated following the graph modelingestdnspired by
the language model for text retrieval, we extend this frapr&vfor matching the
query graph with the document graphs from the database .esreag then ranked
based on the relevance values of the corresponding imaghgra

Two instances of the visual graph model have been applidtetprioblem of
scene recognitiomndrobot localization We performed the experiments on two
image collections: one contained 3,849 touristic imagesaanother composed of
3,633 images captured by a mobile robot. The achieved seshitiw that using
visual graph model outperforms the standard language nattklthe Support
Vector Machine method by more than 10% in accuracy.

Keywords: Graph Theory, Image Representation, Information Retrjeval
Language Modeling, Scene Recognition, Robot Localization.
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Chapter 1

Introduction

Napoleon once declared that he preferred a drawing to a longniegoday;, |
am certain he would say that he would prefer a photograph.
Brassa

As an old saying goes'A picture is worth a thousand words” pictorial
information is a crucial information complementary to tleattial information.
Brass& a photo-journalist, had captured the same importancehefvisual
information for his interview foCameramagazine in 1974. Indeed, human tends
to prefer using visual information to express their ideas #weir communication
needs.

In recent years, the number of image acquired is growingdhgpihanks to
the invention of digital cameras and the creation of phofarisly sites such as
Flickr!, Picasd, Photobucket etc. Digital cameras are becoming cheaper and
more friendly to the amateurs. This fact has encouragedsbesuo explore the
image world and generate more and more visual contents. Repby Media
Culpd that Flickr, one of the best social photo sharing sites, leashed the
milestone of5 billions photos uploaded to their website in September 2010. The
increase in terms of the number of photos uploaded is vegpstger the years.
Other social networking sites, such as FaceBpbks also claimed to ha5
billion photos uploaded per month in February 2010.

As consequence, a user will need an effective system fomaigg their
photos, searching for a particular photo or automaticalijging their photos with

Lhttp://www.flickr.com

2http://www.picasa.com
3http://www.photobucket.com
“hittp://www.kullin.net/2010/09/flickr-5-billion-photd
Shittp://www.facebook.com
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Figure 1.1: Example of the current state-of-the-art systemimage search. (1)
Google Images, (2) Bing Image by Microsoft, (3) Flikr photoYahoo, (4) FIRE
visual search engine and (5) ALIPR photo tagging and imagecke

some keywords. This raises an important challenge for reseand industry.
Eventually, Annotation-Based Image Retrieval (ABIR) is widesed in the real-
world image search thanks to the success of the web seartteesugh as Google

or Bing. Figurel.l shows some current state-of-the-art engines used for image
search. Some of the current ABIR systems are:

e Google Images Search As of today, Google has indexed more than 10
billion” of images on the Web. The success of the web search engine led
Google to create an image search engine. However theirlrseagine is
still heavily based on textual metadata related to the insamgh as image

Shttp://www.google.com
http://googleblog.blogspot.com/2010/07/0oh-ahh-dedmages-presents-nicer.html



title, description, or links. Recently, Google has added esovew search
features with the image option panel. They implemented seimple

image filters based on thelor information(full color vs. black & white)

andpicture type(photos, drawing, etc.) arfdce detectiorengine.

e Bing Images Search: Similar to Google’s engine, the Microsoft search
engine mainly uses the textual information to index theiotpk. Images
results can be narrowed down by some options sucimage size(big,
medium, small),mage layout(square, rectangle), and the integrating of
face detection technology

e Flickr photo: In order to deal with a large amount of photos uploaded
to their website, Flickr allows users to addgs to their photos or to
organize them intagroups and set®f photos or to localize using the
geographical informatiorfi.e., GPS coordination). However, the provided
textual information is subjective. Hence, the search tesarely satisfied
user’s needs.

Another type of image search is based principally on theyamabf the visual
image content. These systems are known as Content Based Iméigvdke
(CBIR) engines. However, we observe that there are only few CBHRerys
that have been implemented in the real-world context. Mbdtesystems are for
experimental research purposes. Some of these systems are:

¢ Flexible Image Retrieval Engine (FIREY: This is one of the visual search
engines that used several image features such as colarrgextd shape
information for similar image searching. Moreover, thetsysallows user
to fine-tune their queries by using a relevant feedback meshm(i.e.,
scoring the search result with positive or negative indicgt This system
produces encouraging results, although it is far from pérfe

e Automatic Photo Tagging and Visual Image Search (ALIPRj}% This
Is the first automatic image tagging engine developed byarebers at
the Penn State University. This engine will automaticalhalgize and
associate with some keywords to the photos (such as a “geosdoar”
or a more general “outdoors” or “manmade”) according to rthsual
content. In return, these keywords are used to index theoplfiot searching
later. The researchers claimed that the system achieveghaalsicuracy
(approximately 98% of all photo analyzed). However, ALIBRtem tends
to assign more general and higher frequency terms.

8http://www.bing.com/images
Shttp://www-i6.informatik.rwth-aachen.de/deselaegs/ioin/fire.cgi
nttp:/www.alipr.com
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Even though the text retrieval field has received an enoripsuscess, image
indexing and retrieval is still a very challenging problemdarequires a lot of
research efforts. The need for a reliable image retrievsiiesy is the research
trends for the decade. In the scope of this dissertationntead to add some new
perspectives to this challenging puzzle.

1.1 Motivations

CBIR is an active research domain for more than 20 years. CBIRm®gst
are complex retrieval platforms which combine multipleaaref expertises from
computer vision and machine learning to information retie(Figure 1.2).
Achievements have been made to contribute to the advanterhdre domain.
However, a good CBIR system is still far from a reality.

)

ML: Machine Learning IR: Information Retrieval

CV: Computer Vision CBIR: Content-Based Image Retrieval

Figure 1.2: Content Based Image Retrieval (CBIR) in the intersedt different
research fields.

On the other hand, still image representations for com@rgeabout combin-
ing multiple points of views. A broader perspective for nmakdia document
indexing and retrieval is given by R. Datta, D. Joshi, J. Lidah Z. Wang
in [Dattaet al.2008: “The future lies in harnessing as many channels of
information as possible, and fusing them in smart, pra¢tways to solve
real problems. Principled approaches to fusion, particlygrobabilistic ones,
can also help provide performance guarantees which in tumved to quality
standards for public-domain systems”
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This reflexion also holds in the specific context of image xnog and
retrieval. The points of views of images rely on differengioms extracted,
different features generated and different ways to integteese aspects in order
to annotate or retrieve images based on their visual siityilar

Let us present a short overview of the diversity of approaatecountered
in the image indexing and retrieval domain. Image indexingd eetrieval may
use predefined segmentation in blockhiiaet al. 1997, or try to consider seg-
mentation techniques based on color/textiedzenszwalb & Huttenlocher 20p4
or point of interest like the well-known work of D. Lowd.¢we 2004. The
feature considered are mostly represented using histegodrfeatures (colors,
textures or shapes) or dfag-of-word (BoW) [Sivic & Zisserman 200Bor of
latent semantic analysis (LSAPhamet al. 2007. Other approach may consider
spatial relationships between regioisijith & Chang 1996 When considering
more complex representations, other approach maygaseeptual graphiepre-
sentations Qunis & Pasca 1998

A short survey on the state-of-the-art leads us to severalitiy:

e Integration of spatial relation. Most of current image representation is
based on the flat and numerical vector presentation of Bow mobee
information on the spatial relations between visual eleésn not well
considered. Therefore, we believe that a complete imageseptation of
image contents should include in the right way this impdrtaformation
together with the visual features.

e Graph-based image representation While studying the graph theory,
we think that it should be appropriate to use this type of eéspentation
to combine the visual contents and the relations among tH@mph has
been used as a general framework for structural infomatemnesenta-
tion [Sowa 1984Ballard & Brown 1982. Considering image content as a
special source of information (i.e., visual features, igpa¢lations), graph
is a well-suited representation for image contents.

e Bridging the semantic gap An important underlying issue that we would
like to address is to reduce theseémantic gap between high-level of
knowledge representation (e.g., text description, comepnformation)
and the middle-level of image representation (e.g., Bow mhodsual
concept detection). Indeed, the graph-based image repatisa will add
an intermediate layer to fill this gap.

e Graph matching with probabilistic framework . Classical graph match-
ing algorithm is a main bottleneck for the graph-based kedgé repre-
sentation. However, probabilistic approaches (such asdayanethods,
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Probabilistic Latent Semantic Analysis (pLSA), Languageddling, etc.)
have been developed widely in the information retrievaldfiér the
decades. We think that it should be interesting and impottaexpress
the graph matching process with the probabilistic matchiagpework.

Therefore, the objective of this thesis aims to answer a(darot all) of the
above mentioned questions.

1.2 Problem statements

In this dissertation, we address two specific problems, haegraph-based
image representatioand agenerative graph matching method

1. First, we focus on a representation of image content, ieesely graph-
based representation, which is able to represent diffgreimts of views
(namely several visual representations and spatial oalstiips between
regions). Despite the fact that selecting relevant regems extracting
good features are very difficult tasks, we believe that the wea represent
different points of views of the image (like several segragohs and/or
several features for instance) will also have a great immactmage
annotation and image retrieval.

Considering a graph that represents the visual featureshvemneintended
to preserve the diversity of content when needed. In faath ggraphs
are versatile, because they can handle early fusion-likeoaghes when
considering several representations in an integrated matqrocess as
well as late fusion-like approaches when considering niagcbn specific
sub-graphs before fusion.

2. Second, we define a language model on such graphs thaedattié
problem of retrieval and classification of images. The edgéof considering
language models for such graphs lies in the fact that it bsneém this
successful research field of information retrieval sinesathd of the 90s and
in particular the seminal work of Ponte and Croft Pojnte & Croft 1998
Such language models are well-defined theoretically, asal lzhve shown
interesting experimental results, as synthesizedManninget al.2009.
Therefore, our main focus is to propose an extension of lagpgumodels
in the context of graph-based representation for imagesobnt

On the practical side, we will apply the above graph modelmapplications
(Figurel.3): scene recognition systeamdrobot self-localizing system
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Figure 1.3: Two applications of this thesis: (a) a scenetifieation system for
mobile phone and (b) a self-localization system for molwleot.

1. The first application is acene recognition systeior mobile phone service,
for instance the Snap2Tell system developed by the IPAL Iathis system
enables user to take a picture of a monument with their campleoae,
send it to Snap2Tell's server and to receive in return ttiarisformation
about the monument. To do so, a set of images taken from 1@fa&one
landscapes has been collected and used for experimenfabdgas. The
main task of the recognition system is to match a query imagaé of the
101 different scenes (or 101 classes).

2. The second application israbot self-localizing systemsing only visual
information, known as the RobotVisidhtask in ImageCLEF international
benchmark and competition. The robot has to determine iktirea its
topological location based on the images acquired. The éna@guisition
was performed within an indoor laboratory environment csiimgy of five
rooms of different functionality under various illuminati conditions. The
main task of the localization system is to identify the cotr®oms of the
robot in anunknowncondition and with different time spans.

1.3 Main contributions

Coping with the specific problems as stated above, the cotitrits of this
thesis are as follows:

e First, we present anified graph-based framework for image represen-
tation which allows us to integrate different types of viscancepts and
different spatial relations among them. This graph can led @@ different
image points of views in the very flexible way. Actually, thMsual graph

Hhttp://www.ipal.i2r.a-star.edu.sg
nttp:/lwww.imageclef.org/2009/robot
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model is a higher layer of image representation that appesathe image
semantics.

e Second, we extensively study tegtension of language model for graph
matching which allows a more reliable matching based on a well studied
theory of information retrieval. The matching method alkomatching a
complex graph composed of multiple concept sets and melltiglations
set. We also propose a smoothing method that adapts to théicpeaph
model.

e Finally, the experimental results, performed on STOIC-106d RobotVi-
sion '09 image collections, confirm theerformance and the effective-
ness of the proposed visual graph modeling The proposed method
outperforms the standard language modeling and the stdte-@rt SVM
methods in both cases.

The results of this work have been published in the JourndVlalimedia
Tools and Applications (2011), the proceeding of IEEE Inéional Workshop
on Content Based Multimedia Indexing (CBMI 2010), the procegadihACM
Conference on Research and Development in Information Relrigoster
session of SIGIR 2010), the proceeding of SingaporeaneRrBPAL Symposium
(SinFra 2009) and the proceeding of ACM Conference on Infaonaand
Knowledge Management (CIKM 2007).

Our participation in RobotVision track, part of ImageCLEF 20@8ternational
evaluation, also led to good results. The technical methasie been reported in
a working note for the ImageCLEF 2009 workshop and a book enaptecture
Notes for Computer Science (LNCS) published by Springer. Apleta list of
publications can be found in the Appendix A.

1.4 Thesis outline

We describe here the structure of this thesis. This thesisirachapters:

Chapter 2 introduces the early works on image indexing and retrieVeé
will give an overview of the image processing such as imagemposition (grid
partition, region segmentation or local keypoints), vigaature extraction (color,
edge histogram and local invariant features). A preliminadexing models
based on the Bag-of-Word (BoW) model is also introduced. Werteshow the
visual concepts are constructed from the low-level visaatires and quantized
with the vector model. How latent semantic technique wasd ssecessfully with
the BoW model is also discussed. Our goal is to present in tapter the basic



1.4. Thesis outline 9

steps in representing image contents. Based on these elemnstaps, we present
in chapter 3 the different learning methods of visual coteépthe literature.

Chapter 3 concentrates on different machine learning techniquesdas
the numerical representation of an image. We review two magjroaches in
information retrieval: generative-based model and disicrative-based model.
The generative models include two main methods: Naive Bayé®aobabilistic
Latent Semantic Analysis (pLSA). The discriminative madieiclude two main
methods: k-NN classification and the famous Support Vectaciihe (SVM). We
also mention in this chapter how the structure been captioreepresent image
content with the graph-based model. One important modéebtivamethod relied
on is Language Modeling (LM) method will be detailed in thiepter.

Chapter 4 gives an overview of our proposed approach. The propose@imod
includes 3 main stages:

e Image processing stagaims at extracting image regions and keypoints
from the image. It also consists of computing the numerieatdre vectors
associated with image regions or keypoints.

e Graph modeling stageconsists of grouping similar visual features into
clusters using the unsupervised learning algorithm. TIsealiconcepts
are generated for each type of visual feature. Then, theaspalations
between the visual concepts are extracted. Finally, anenmsagepresented
by a visual graph composed of a set of visual concepts andd spatial
relations.

e Graph retrieval stage is to retrieve the relevant graphs to a new image
qguery. Inspired by the language model, we extend this frammkevor
matching the query graph with the trained graph from thelzegta. Images
are then ranked based on their probability likelihoods.

Chapter 5 details the proposed visual graph model. We formalize the
definition of visual graph model and give examples of two yragstance. The
graph matching model takes the query graph model and thentsaigraph model
as input to rank the image based on their probability likedith The matching
model is an extended version of the language modeling tohgrap\Ve also
explain how we transform the normal probability into the-fmgbability domain
to compute the relevance status value of image.

Chapter 6 presents the first application using the proposed appraadtoor
scene recognition systemWe will present the proposed visual graph models
adapted for the STOIC collection. The experimental resillthve studied with
different impacts of the relation and of multiple image gegon the classification
performance. We will describe different techniques foiimoing the smoothing
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parameter with cross validation technique and optimiraliased on the test set.
The implementation of the scene recognition system with &e detailed in this
chapter.

Chapter 7 demonstrates the second application of the visual grapheinod
namelymobile robot localization The proposed visual graph models adapted to
this image collection will be presented. We will provide #perimental results
with different impacts of the relation and of the room cléisation accuracies.
We also give a comparison of the proposed model with the SVithate Then,
we will discuss on how validation set has been used to chdwsappropriate
features for representing the image contents. The posepsing step and the
official results of the run submitted to the ImageCLEF willealbse discussed.

Chapter 8 concludes this dissertation with the discussion on theritmriton
and also on the perspective of the future works.
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Chapter 2

Image Indexing

To take photographs means to recognize - simultaneouslyéhuh a fraction of
a second - both the fact itself and the rigorous organizatbuisually perceived
forms that give it meaning.

Henri Cartier-Bresson.

2.1 Introduction

In [Marr 1983, Marr described the three layers of a classical paradigm in
machine vision: therocessing laye(1), themapping layer(2), the high-level
interpretation layer(3) (detailed in Figur.1). These three layers can be aligned
to the three levels of image representation in CBIR, nanedyure layer(low
level), conceptual layermiddle level) andsemantics laye(high level). The
feature layer concerns how to extract good visual featunen fthe pictorial data
of an image. This layer is close to the actual computer remtason of image.
The conceptual layer maps the low-level signal informatiora higher visual
perception form, called visual concept. A visual concepejmesented for a set
of homogenous group of visual features. The semantics lepesents image
with the highest form of knowledge representation whichlise to the human
understanding, i.e., textual description or textual cphce

For this reason, thesemantic gapis often referred to the lack of co-
incidence between the information that one can extract froe isual data
and the interpretation that the same data have for a user invargsituatiori
[Smeulderst al.200J. More precisely, it is the lack of knowledge representatio
between the low-level feature layer and the high-level seitsilayer. Since this
problem is still unsolved, our objective is to inject a nevermediate-levebf
image representation in between conceptual layer and ses&yer. We believe
that will help to reduce thigap.

13
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“A man face”
B G eyes
_ nose
ngh-'level - @ Interpreting
Semantics layer mouth

=

Middle-level | @ _
Conceptual layer Mapping

=

Low-level
Feature layer @ Processing

o

Figure 2.1: lllustration of Marr’'s paradignMarr 1987 for a vision system.

In this chapter, we will describe the works concerning nyoslte first two
layers (visual feature layer and conceptual layer) in a CBIResy. In the
next section, we will present three different methods fagioe extraction:
grid partitioning, region segmentation and interest pdligtection. Sectior2.3
provides the information on the visual features extracttap. Sectior2.4 gives
more details on the indexing models, such as vector modgipbavords model
and latent semantics indexing model, from the CBIR fields. Ikinsection2.5
will summarize this chapter.

2.2 Image representation

In CBIR, images are often divided into smaller parts to extrésual features
from each part. The objective of image partitioning aims btaming more
informative features by selecting a smaller subset of pgiagkepresent a whole
image. Several image representations have been proposdtis Isection, we
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summarize some frequently used methods in CBIR such as unpartitioning
into regular grid, region segmentation or local region a&ation.

2.2.1 Grid partitioning

This is a simple method for segmenting an image. A rectangyld with
fixed-size Fenget al. 2004 slides over (can be overlap) the image (see Figure
2.2). For each rectangular grid, a feature vector is extracfBige rectangular
size can be variable to make a multi-scale versibim[& Jin 2009 of grid
partitioning. Combining overlapping and multi-scale gaotiing enables to cope
with changes in object positions and image scale changes.

Figure 2.2: An image decomposed into 5x5 sub-images usgqgaegrid

Using grid provides a number of advantages. The performahetangular
grid as pointed out infenget al. 2004 is better than the method based on region
segmentation in annotation tasks. In addition, there igaifstant reduction in
the computational time required for segmenting the imagel @artitioning (with
more regions than produced by the segmentation algoritiowsthe model to
learn how to associate visual features with images using ehrtarger set of
training samples.

2.2.2 Region segmentation

Segmenting an image into regions may help to find out theioasbetween
visual features and objects contained in the image. Imagmeetation frees
us from considering every pixel of the image but rather onigugs of pixels
that condense more information during subsequent praugssis defined in
[Smeulderst al. 2004, there are two types of image segmentation:

e Strong segmentationis a division of the image data into regions in such a
way that region T contains the pixels of the objectiO= O).
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e Weak segmentations a grouping of the image data in conspicuous regions
T internally homogeneous according to some criterion, hdlyewith T a
subset of O C O).

These segmentation algorithms are based on some homaggention in
each region such as color and texture. It is also difficult lbbaim a strong
segmentation so that each region contains an object. THesegaentation helps
to eliminate this problem and sometimes helps to identityeb@bjects in image
[Carsoret al. 1999.

Many algorithms have been proposed for region segmentatidrgraph-
based algorithm has been used to find minimum normalized@utN-cut)
[Shiet al. 1999 in a pixel graph of image. ANormalized-cutalgorithm gives
bad results with cluttered background as they use only cadohomogeneous
criterion. The computational time of N-cut algorithm is@ksxcessive due to the
operation based on complex graph. The Blobworld syst€ardoret al. 1999
used this algorithm to build image tokens (often called b)ob

(a) Original Image (b) Segmented Image
1 L.-J
Rl R2 R3 R4 RS

Figure 2.3: Example of image segmentation using the Meé#hadorithm

Likewise, themean-shift segmentatidiComaniciu & Meer 200Ralgorithm
searchs for a higher density of data distribution in imagé&he mean-shift
segmentation algorithm is recognized as a very flexiblerdhyn (user can choose
different parameters: window size, filter kernel, regioregold, etc...) and
perhaps the best segmentation technique to date.

2.2.3 Interest point detection

Saliency-based models have been studied for image indexidgetrieval by
[Schmid & Mohr 1997Hare & Lewis 200%for several years and later have been
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experimented for the object recognition dyojve 1999. The saliency regions
are extracted from the interest points using local detestorh as Harris corner
[Harris & Stephens 1988 Different of Gaussian (DOG) detectoLdwe 1999
and affine invariant point\likolajczyk & Schmid 2002 (see Figure2.4). These
points are localized in the zones of the image which contaim information.
They held also some invariant properties to image transdtoms (e.g., affine,
scale, rotation) and illumination conditions.

Haris-Laplace Different-of-Gaussians Laplace-of-Gaussians

Figure 2.4: Saliency regions detected using different outh Haris-Laplace,
DOG and LOG Mikolajczyk & Schmid 2002.

The saliency region-based model has shown good performianobject
recognition problems with very high accuracy on some lichibbject databases
and with certain kind of objects (building, car, bicycl¢ [Lowe 2004. However,
dealing with more general objects and with a large datasetperformance of
saliency-based decreases substantially.

2.3 Visual features

2.3.1 Color histogram

RGB space This is the fundamental representation of color in compute
RGB uses an additive model in which red (R), green (G) and bluea(B)
combined in various ways to reproduce the color space. Tl enodel is
simple. But it is sensitive to illumination changes. Nevel#iss, this color model
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in widely used in object recognitio®juffy & Crowley 200Q and in region-based
color retrieval systemgJarsonret al. 1999.

HSV! space Artists sometimes prefer to use the HSV color model over
alternative models such as RGB or CM¥Kpace, because of its similarities to
the human color perception. HSV encapsulates more infeomabout a color.
Using this color model in object representation has showfiiciency and its
invariance to illumination changes.

L*a*b space. The CIE 1976 L*a*b color model, defined by the International
Commission on Illumination (Commission Internationale ddt@ge, hence its
CIE initialism), is the most complete color model used comiegrally to describe
all the colors visible to the human eye. The three parametethe model
represent the lightness of the colbr its position between magenta and green
ax and its position between yellow and blbae. This color description is very
interesting in the sense that computer perceives the ctdse do the human
vision.

According to a color sapce, eolor histogramis then extracted for each
image. Considering a three-dimensional color space, =), quantized on each
component to a finite set of colors which correspond to thebmrmof bins/N,,

N,, N, the color of the imagd is the joint probability of the intensities of
the three color channels. Lete [1,N,|, j € [1,N,] and k € [1, N,]. Then,
h(i,j, k) = Card{p € I | color(p) = (i, 7, k)}. The color histogrant of image

| is then defined as the vectéf (/) = (..., h(4, j, k), ...).

In [Swain & Ballard 199], an image is represented by its color histogram.
Similar images are identified by matching theirs color lgsémns with the
color histogram of the sample image. The matching is perorroy his-
togram intersection. Similar approach has been instafiettié QBIC system
[Flickneret al.1995. This is also the first commercial image retrieval system
developed by IBM. This method is robust to changes in the tatem, scale,
partial occlusion and changes of the viewing position. Hawethe main
drawback of the method is its sensitivity to illuminationnditions as it relies
only on color information.

2.3.2 Edge histogram

Edge or shape in images constitutes an important featurepiesent the
image content. Also, human eyes are sensitive to edge ésaftor object recog-
nition. Several algorithms have been applied for edge tleteasing different

'Hue Saturation Value
2Cyan Magneta Yellow blacK
Shttp://wwwgbic.almaden.ibm.com/
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methods Harris & Stephens 198&iou & Tabbone 199B such as, Prewitt and
Sobel mask, Canny filter, or Laplacians of Gaussian filters, éts shown in
Figure2.5, edge detection process preserves only the importantiaton on the
contours of the object. These contours are then describ#telshape descriptors
(or edge histogram) and stored for further matching step.

(a) Originalimage (b) Edge detection

Figure 2.5: Edge detection using Sobel mask.

In the literature, various shape descriptors have beeropeap for example,
chain code boundaryFfeeman 1974 Shape ContextBelongie & Malik 2000,
and Radon transform descriptdigbboneet al. 2004, etc. The edge histogram is
invariant to imagedranslationandrotation, and normalizing the histogram leads
to scale invariance Exploiting the above properties, these methods are ugaful
object recognition Belongieet al. 2002 Ferrariet al.201J and image retrieval
[Zhang & Lu 2001 Prasackt al. 2001].

As proposed in\Von et al. 2003, the local edge histogram has been used for
shape descriptor in MPEG-7 video standard. Basically, tballedge histogram
represents the distribution of 5 types of edges in each laczd called a sub-
image. As shown in Figurg.6, the sub-image is defined by dividing the image
space into4 x 4 non-overlapping blocks. Hence, the image partition always
yields 16 equal sized sub-images regardless of the sizeeobtiginal image.
To characterize the sub-image, a histogram of edge disitsibis generated for
each sub-image. Edges in the sub-images are categorizefl tgpes: vertical,
horizontal, 45-degree diagonal, 135-degree diagonal anddirectional edges.
Thus, the histogram for each sub-image represents thavesfaequency of
occurrence of the 5 types of edges in the correspondingrealge. As a result,
each local histogram contains 5 bins. Each bin correspanaisg of 5 edge types.
Since there are 16 sub-images in the image, a totabot6 = 80 histogram bins
is required.
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1 - T

a) vertical edge b) horizontal edge
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c) 45-degree edge d) 135-degree edge  e) non-directional edge
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(a) 5edgetypes (b) 4x4 hlocks
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BinCounts[0] BinCounts[1] BinCounts[79]

(c) Edge histogram

Figure 2.6: Local edge histogram extraction for an imagé WIPEG-7 standard
[Won et al.2002.

2.3.3 Scale Invariant Feature Transform (SIFT)

SIFT extractor has been first introduced rojve 1999. These features be-
long to the class of local image features. They are well athfuir characterizing
small details. Moreover, they are invariant to imagaling imagetranslation
and partially invariant tallumination changesand affine for 3D projection.
Thanks to these invariant properties, SIFTs are become aratanore popular
visual features for image and video retrievahfebniket al. 2006 Lowe 2004.

First, features are detected through a staged filteringoagprthat identifies
stable points in scale space. The result of this detectian st of key local
regions. Then, given a stable location, scale, and orientédr each key point,
it is possible to describe the local image regions in a mamariant to these
transformations. Key locations are selected at maxima anuima of a difference
of Gaussians (DOG) applied in scale space. The input iniagéirst convolved
with the Gaussians function to give an imade This is then repeated a second
time with a further incremental smoothing to give a new imagd he difference
of Gaussians function is obtained by subtracting im&deom A. This difference
of Gaussians is formally expressed as:

D({L‘,y,d) = (G(J?,y, k‘O’) - G(x,y,a)) u ](Ivy)
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with & corresponding to the strength of smoothing and

_ 1 (2 2 2
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Difference of
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Figure 2.7: Construction of the scale space pyramid.

This differentiation process is repeated with differedtiea ofk. A change of
scale consists of sampling the smoothed images by usinghadailinterpolation.
The combination of scaling and smoothing produces a scaleespyramid. An
overview of the scale/space construction is shown in Figure

Minima and extrema detection éf(x, y, o) uses this scale space pyramid and
is achieved by comparing each sample point to its neighimaitsel current image
and 9 neighbors in the scale above and below. It is selectgdfdnis larger than
all its neighbors or smaller than all its neighbors. The ltesiuthis selection is
a set of key-points which are assigned a location, a scal@arientation (i.e.
obtained by gradient orientation computation).

The last step consists of assigning a numerical vector th kegpoint. The
16 x 16 neighborhood around the key location is divided into 16 segiens.
Each sub-region is used to compute an orientation histogéaoh bin of a given
histogram corresponds to the sum of the gradient magnittitteeixels in the
sub-region. The final numerical vector is of dimension 128.



22 Chapter 2. Image Indexing

2.4 Indexing Models

For the past two decades, several indexing models have bepoged in the
literature. The objective of image indexing is to store iemgffectively in the
database and to retrieve similar images from a databasegigea query image.
Image can be indexed using directly the extracted visualifesa (such as, color,
texture and shape) with the vector representation. Rec¢eah#ybag-of-visual-
features (or bag-of-words) inspired from textual indexingw more attention for
its simplicity and effectiveness on storing visual contdrttis section is dedicated
to the presentation some of these indexing methods.

2.4.1 Vector space model

This is a the simplest model in CBIR system. Images are repieséy their
feature vectors. These vectors have the same dimensionoamélized with the
same scale (usually between 0 and 1). Tjiedf* normalization is often used
in information retrieval and text mining. This techniquestaso adopted widely
in CBIR systems. This weighting scheme comes from a statistieasure to
evaluate how important a word is to a document in a colleationorpus. The
importance increases proportionally to the number of time®rd appears in the
document but is offset by the frequency of the word in the asrp

Given 2 feature vector8? and V¢ extracted from image queryand image
documentd, the visual similarity is computed using two different ma@snent
functions:Euclidian distanceor cosines similarity

Euclidean distance

The Euclidean distance is probably the most common apprtwacbmpare
directly two images. Giveiv? andV? are two vectors in Euclidean-space, then
the metric distance of two imagesandq is given by:

AV VY = Ve = V| = VP + VAP =2V eV

The smaller distance indicates the closer of two imagesTdnis.value reflects
the visual similarity of the two images.

Cosine similarity

In contrast to the distance measure, two vectétsndV“ can be considered
to be similar if the angle between their vectors is small. dmpute the cosine
similarity, the normalized scalar product is used to meathe angle between two
vectors :

“term frequency, inverse document frequency
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VieVd
cos(l) = ——————
[Vall[ivel]
In information retrieval, the cosine similarity of two daoents will range
from0to 1. A similarity of 0 implies that documents are identical, and a similarity
of 1 implies they are unrelated.

2.4.2 Bag-of-words model

A simple approach to indexing images is to treat them as sedodn
of regions, describing only their statistical distributiof typical regions and
ignoring their spatial structure. Similar models have bseccessfully used in
the text community for analyzing documents and are knownbasj-bf-word$
(BoW) models, since each document is represented by a distribover fixed
vocabulary.

Object » Bag of ‘words’

Figure 2.8: Image is represented by a collection of visualrdso
[Fei-Fei & Perona 2005

The construction of this model is based on four main steps:

1. Image segmentation consists of dividing image into snagdarts. As
introduced in previous sectidgh2, we can consider different types of image
segmentation such as pixels, regions or interested points.

2. Feature extraction step consists of representing eaatpamregion by a set
of visual features as detailed in secti®/3. Each feature is quantized and
normalized by a vector with fixed size.
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3. Visual vocabulary construction step converts featuretorerepresented
image regions toVisual word$ or “visual concepts(analogy to words
in text documents), which also producesvastal dictionary (analogy to
a word dictionary). A visual word can be considered as a ssp&tive of
several similar image regions. One simple method is peifayrh-means
clustering over all the vectors. Visual words are then defe®the centers
of the clusters. The number of the clusténs the vocabulary size.

4. Each image region is mapped to a certain visual word thr@ugustering
process and the image can be represented by the quantizied g&the
visual vocabulary.

In step 3,k-means clusterings performed on a set of visual features to
construct the visual words. We present in the following afodescription of
this algorithm.

K-means clusteringis a popular technique for automatic data partitioning in
machine learning. The goal is to fikacentroid vectorg, ..., 1, for representing
each cluster. The basic idea of this interactive algorithnoiassign each feature
vectorz to the cluster such that the sum of squared efrar is minimum

E Nj
Err =YY iy —
i=1 j=1
wherez;; is thej* point in thei'" cluster,; is the mean vector of” cluster and
N; is the number of pattern in thg" cluster. In general, the k-means clustering
algorithm works as follows:

1. Select an initial mean vector for eachkadlusters.

2. Partition data intck clusters by assigning each patterp to its closest
cluster centroidy;.

3. Compute new mean clusters, ..., i, as the centroids d clusters.
4. Repeat step 2 and 3 until the cluster criterion is reached.

The initial mean vectors can be chosen randomly fkaeed points in the data
in the first step. The partitioning is then performed fromsthanitial points. In
the second step, to measure the distance between two gattifarent metric
distances (e.g., Hamming distance, Euclidean distance), etan be applied.
Usually, the Euclidean distance is good enough to measardisitance between
two vectors in the same feature space. In step 3, the centréad each cluster is
re-estimated by computing the mean of cluster members. Uimdar of iterations
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can be used in the last step as a convergence criterion. eaks algorithm has
a time complexity ofO(nk) for each iteration. Only one parameter which needs
to be fixed is the number of clusteks

As demonstrated inHei-Fei & Perona 2005 this model is simple but yet
effective for image indexing. However, the lack of spatilhtion and location
information of visual words are the mains drawbacks of thisdel. Using
this representation, methods based on latent semantietah, such as latent
semantic analysisMonay & Gatica-Perez 2003Phamet al. 2007 and proba-
bilistic latent semantic analysiMonay & Gatica-Perez 20Q04nd latent Dirichlet
allocation Blei et al.2003, are able to extract coherent topics within document
collections in an unsupervised manner. Other approackeelamed on discrim-
inative methods with annotated or slightly annotated exasysuch as support
vector machineVYapnik 1999 and nearest neighborSipakhnaroviclet al. 2005.

In the next chapter, we will review of some of these learnireghmds.

2.4.3 Latent Semantic Indexing

Latent Semantic Analysis (LSA) was first introduced as a tettieval
technique Deerwesteet al. 19970 and motivated by problems in textual domain.
A fundamental problem was that users wanted to retrieverdeats on the basis
of their conceptual meanings, and individual terms proviitle reliability about
the conceptual meanings of a document. This issue has tweectsspynonymynd
polysemy Synonymydescribes the fact that different terms can be used to refer
to the same concepBolysemydescribes the fact that the same term can refer to
different concepts depending on the context of appeardrhe term. LSA is said
to overcome these deficiencies because of the way it assscreganing to words
and groups of words according to the mutual constraints dddxkin the context
which they appear. In addition, this technique is similahwine popular technique
for dimension reduction, i.e., principal component anialy§orbanet al. 2007,
in data mining. It helps to analyze the document-by-ternrimatl mapping the
original matrix into lower dimensional space. Hence, thenpatational cost is
also contracted.

Considering each image as a document, a coocurrence matiocoment-by-
term M, a concatenation of vectors extracted from all documerit mvdel Bow
is built. Following the analogy between textual documert emage document,
given a coocurrencce document-by-term maddxankr, M is decomposed into
3 matrices using Singular Value Decomposition (SVD) afed:

M=UxV"'
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where

U : is the matrix of eigenvectors derived frabd M/

V't is the matrix of eigenvectors derived fraii’ A/

Y :isanr x r diagonal matrix of singular values

o : are the positive square roots of the eigen-value®/af’* or M'M

This transformation divides matrix/ into two parts. One is related to the
documents and the second related to the terms. By selecting dargest values
from matrixX and keep the corresponding columriirandV/, the reduced matrix
M, is given by:

M, = UpS, Vi

wherek < r is the dimensionality of the concept space. Indeed, thecehoi
parametef: is not obvious and depends on each data collection. It shmmilarge
enough to allow fitting the characteristics of the data. @mter hand, it must be
small enough to filter out the non-relevant representateinil$. To rank a given
document, the query vectaris then projected into the latent space to obtain a
pseudo-vectqly, = g x Uy, with dimension reduced.

Recently, LSA has been applied for scene modeliQgdlhaset al. 2007,
image annotationMlonay & Gatica-Perez 2003 improving multimedia docu-
ments retrieval Phamet al. 2007, Monay & Gatica-Perez 20Q7and indexing
of video shots $ouvannavonegt al.2004. In [Monay & Gatica-Perez 2003
Monay and Gatica-Perez have demonstrated that the LSArbotpesd the pLSA
of more than 10% on annotation and retrieval task based on CQRHection.
Unfortunately, LSA lacks a clear probabilistic interpteda comparing to other
generative models such as probabilistic latent semanéilysis.

2.5 Conclusion

In this chapter, we have introduced the basic steps in agtstg an image
indexing system. Images are decomposed into image regiwhdhan visual
features are extracted for indexing. Each type of imagessgmtation and visual
features described in this chapter represerisiat of viewof an image. It can
be combined in different ways for effective use of the retlgprocess. Most of
the current approach are based on the early fusion methochwalies on the
vector combination for the image indexing. Next chaptet didcuss on how the
machine learning methods will be used for image modelingratréeval.



Chapter 3

Image Modeling and Learning

3.1 Introduction

In the previous chapter, we presented the popular techsithat have been
used for image indexing. An image is decomposed in severg \{feom pixels
to image regions) for faciliting visual feature extractiofrrom the extracted
image regions, several visual features have been condidsteh as color
histogram, edge histogram and SIFT. The early image indexiodel with vector
representation of the bag-of-word model were also destribe

In this chapter, we study some machine learning methods fmseithage
modeling in the literature. Following the paradigm of Maktgrr 1983, these
steps correspond to tmeapping layemand theinterpretation layer

First, we will give an overview on the state-of-the-art ok tlwo major
branches of learning models: generative approaches amdindisative ap-
proaches. The important theory of language modeling fot tettieval will
also be presented. Structured image representation hasifteeduced early
in the computer vision Ballard & Brown 1982 and then applied for image
modeling Boutell et al. 2007, Aksoy 2006 Ounis & Pasca 1998The main issue
of structured image representation is the matching meth@ded on graph.
Classical approaches on sub-graph isomorphiditmann 1976 are costly and
ineffective, with its computational complexity cast as Bémplete problem.
Modern approaches, such as kernel based and 2D HMMs, exiiresgraph
matching by classifying gbathsandwalkswith SVM kernel or as the stochastic
process of Markov’s model.

Currently, the generative model, such as language modaligef al. 2007,
Maisonnasset al. 2009 are extensively studied for the generative matching
process. We will also give a discussion on this active topi@mm these pivots,
we propose an approach that takes the advantage of both-pazpl image

27
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representation and the generative matching process téraonthe visual graph
modeling. With this approach, we hope to add a new layer toaethe semantic
gap discussed in the literature.

Section 3.2 presents two methods of generative approachéaive Bayes
and Probabilistic Latent Semantic Analys{pLSA). The language modeling
approach from information retrieval will be detailed in 8ex 3.3, Two others
methods of discriminative approaches, namidBarest Neighborsnd Support
Vector Machine(SVM), will be described in sectiold.4 Then, sectior3.5
concentrates on the structured representation of the invégehe graph model,
such agConceptual Grap{CG) andAttributed Relation Grapt{ARG). We will
also introduce some graph matching techniques develop#teihiterature, for
exmple, (sub)graph isomorphisyrkernel basednethods andwo dimensional
multiresolution hidden Markov mode(D MHMMSs). Finally, based on the
review of the state-of the art, we propose our graph-basegemepresentation
approach and the matching method inspired from the languaggeling in
section3.6.

3.2 Generative approaches

3.2.1 Naive Bayes

Naive Bayes is a simple probabilistic classifier based on Baylesorem. It
has a strong condition on the class where each featuremsagstl independently.
In general, the probability model for a classifier is a caondél model over a
dependent class variablewith a small number of classes, conditional on several
feature variableg throughF;,. Using Bayes’ theorem, we write:

p(C) p(F, ..., FalC)
p(Fl, .. ,Fn)

Asume that each featur€ is conditionally independent of every other feature
F; for j # 4. This leads to

p(C|F1,...,Fn) =

n

1

p(C|F1, R Fn) = Ep<c’> Hp(FAC)

where Z is a scaling factor dependent only dn, ..., F,. Finally, the
corresponding classifier is defined as follows:

n

Classify(f1,..., fu) = argmax p(C = ) [ p(Fs = £1C = ¢)

¢ i=1
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This is known as thenaximum a posterioiMAP) decision rule. This model
is popular in text analysis and retrieval, for example: SPAMail detection
and document classification. Despite the strong indepad@ssumption,
the naive Bayes classifier has successfuly been used for kassifecation
[lwayama & Tokunaga 199%nd scene categorizatiof¢i-Fei & Perona 2005
A hierarchical version of this classifier has been developgdDavid Blei
[Blei 2004 and been applied to both text and image data.

3.2.2 Probabilistic Latent Semantic Analysis (pLSA)

pLSA is a statistical technique for the analysis of co-opemce data which
evolved from Latent Semantic Analysis (LSA)¢erwesteet al. 199Q, proposed
initally by Jan Puzicha and Thomas Hofmartiofmann & Puzicha 1998 In
contrast to standard latent semantic analysis which stenslfinear algebra and
downsizes the occurrence tables (usually via a singularevdecomposition),
probabilistic latent semantic analysis is based on a mexiecomposition derived
from a latent class model. This results in a more principlgat@ach which has a
solid foundation in statistics.

Considering observations in the form of co-occurrences)(afdvords and
documents, pLSA models the probability of each co-occuwees a mixture of
conditionally independent multinomial distributions:

P(d,w) = P(d)P(w|d)

and

P(w|d) = P(w|z)P(2|d)
z€Z
wherez is the latent variable or hidden topic extracted from a sdbpics 2 of
image documents.

The standard procedure for maximum likelihood estimatiolaient variable
models is the Expectation Maximization (EM) algorithm. ENMeenates two
steps: (i) an expectation (E) step where posterior proiiasilare computed
for the latent variables, based on the current estimates of the parameters, (ii)
an maximization (M) step, where parameters are updated if@ngoosterior
probabilities computed in the previous (E) step. Howeves reported that the
PLSA has severe over fitting problems. The number of parasmgtews linearly
with the number of documents.

pLSA methods are very popular for text indexing and retlipMafmann 1999
thanks to its solid probabilistic foundation. This techuregvas also adopted by the
CBIR community Lienhartet al. 2009 Lu et al.201( and for image annotation
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[Monay & Gatica-Perez 200Monay & Gatica-Perez 200.7 However, estimat-
ing parameter using E-M step is a very costly process whiehnin limitation
of this method.

The following section present the principal theory of thegaage modeling
which is a key model of this thesis. We also give a short suofelie application
of the language modeling for image classification.

3.3 Language modeling approach

Language modeling (LM) was first introduced in linguisticheologies,
such as speech recognition, machine translation and hémdwrecognition
[Rosenfeld 200P Ponte and CroftPonte & Croft 1998applied the probabilistic
language modeling in text retrieval and obtained good eeiti accuracies on
TREC collections. Similar to the previous generative madtise documents
are ranked by the probability that the query could be geadray the document
models. The query likelihoo®(D|Q) is computed by using Bayes’ Rule:

P(QID)P(D)
P(Q)

We can ignore the normalizing constd?{()), the former fomular leads to

P(DIQ) =

P(D|Q) o< P(QID)P(D)

where P(D) is the prior probability of a document, which is assumed to be
uniform in most cases. Therefore, the documents are ranieitatent to the
joint probability of P(Q|D). This is known asnaximum a posterior{MAP)
technique which selects the most probable documketat maximize the posterior
distribution of P(D|Q).

3.3.1 Unigram model

The simplest form of language modeling is the unigram mod&ne each
word is estimated independently of each other. To estinteggtobability of a
word in the documents, one has to make an assumption aboudligindution
of the data. In the literature, a number of different assiwngt have been
made about the distribution of words in document. Thaltiple-Bernoulli
distribution captures a set of binary events that some word appears in the
document or not. Therefore, the document can be represdaytesl binary
vector of 0 and 1 to indicate the occurrence of a correspgndiard. The
multiple-Bernoulli distribution is well suited for represting the presence of
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query word and insisting on the explicit negation of wordg(e:pple but not
orange). In [Ponte & Croft 1998 the original language modeling for IR was
based on multiple-Bernoulli distribution assumption. @Givaultiple-Bernoulli
assumption, the query likelihood gives:

PD)= [] PwD) [[ (-PD)

WEQL ;- dk wéqi,..., qk

wherew is a word in documenb. This assumption is simple and straightforward.
However, one limitation of this distribution is that thet&atdoes not deal with
the importance (i.e. the frequency of occurrence) of worthendocument. For
this reason, most of the current modeling assumptions irréfhaw centered on
multinomial distributions.

Themultinomial distributiontakes into account the number of occurrences of
words (e.g.apple appears 3 times angrange appears 2 times in the document).
This suggests that the document can be encoded by a vecloth@ihumber of
times each word appears in the document. Assuming a muliaahstribution
over words, we can compute the query likelihood using umigreodel. The query
likelihood is then calculated using unigram model for thewtaent as follows

m

PQID) =[] PlaID)

i=1

whereg; is a query word anah is the number of word in the query. To calculate
this score, probability of query worg is estimated from the document

#(qi, D)
#(*, D)

where #(q;, D) is the number of times worg,; occurs in documen), and
#(*, D) is the total number of words i®. For a multinomial distribution,
maximum likelihood refers to the estimate that makes theeesl value of
(gi, D) most likely.

One problem with this estimate is that if any of the query vgoimissing
from the document, the score of query likelihood will be zer®dhis is not
appropriate for long query which may have frequently “rmgswords”. In
this case, it should not yield a zero score. To overcome thiblem, one
solution is to give a small probability for missing words whiwill enable the
document to receive a non-zero score. In fact, this smalbgiiity is taken
from the prior information of the document collection. Th@ution is known as
smoothingechniques odiscountingtechniques. We will address this problem in
the following section.

P(Qi|D> =



32 Chapter 3. Image Modeling and Learning

3.3.2 Smoothing techniques

Smoothings a popular technique used in information retrieval to dvibie
probability estimation problem and to overcome the dataitypaf collection.
Typically, we do not have large amount of data to use for the@hestimation.
The general idea is to lower (discounj the probability estimates for words that
are observed in the collection and apply that probabilityhe unseen words in
the document.

A simple method is known as tldelinek-Mercer smoothingelineket al. 1997
involving the linear interpolation of the LM from the wholeltectionC'. Given
P(¢;|C) is the probability of query worg; estimated from the collectioff and
is the smoothing coefficient assigned to the unseen woradtimate probability
of query from document model becomes:

P(q|D) = (1 = A\)P(q|D) + AP(¢:|C)

The collection model for estimating the query wagds P(¢:[C) = Z{%2),
where+#(q;, C') is the number of time query worg appears in collectiod’ and
#(x,C') is the total number of words in the whole collection. Subsitilg this
probability in the query likelihood gives:

A #(qi, D) | #(4::C)
P(Q|D) gw ke R Trwe)
The smoothed probabilities of document model still vefify/ ; P(¢;|D) = 1.
This smoothing method is simple and straightforward. Hawvew is more
sensitive to) for the long queries than the short queries. The reason 3 lon
gueries need more smoothing and less emphasis on the wgjglfitivords.

Another smoothing technique call&lrichlet smoothingtakes into account

the document length. The parameidsecomes

_r

#(x, D) + p

wherey is a parameter whose value is set empirically. The proliglasitimation
of query wordg; leads to:

)

A:

) #(qi,C)
#(q“ D) +p #(x,0)

#(x, D) +
Similar to Jelinek-Mercer smoothing, parametegives more importance to the
relative weighting of words for small values. On the othendhathis parameter
also takes into account the prior knowledge of long documentherefore,

Dirichlet smoothing is generally more effective than JekrMercer, especially
for short queries that are common in the current retrievgiress.

P(Qi‘D) =
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3.3.3 n-gram model

The extension of unigram to the higher order language madkhown as
n-gram language model. In n-gram model, the probabilitystineate for word
¢; depends on the — 1 preceding words. Hence, it is able to model not only
occurrences of independent words like unigram model, bet #he fact that
several words often occur together. This effect is intangsin text retrieval
because the combination of words can have different mearungparing to the
same words used independently (e.g. “swimming pool” or 1\S&leet Journal”).
The n-gram models will help to capture efficiently this caarcence information.

The query likelihood probability?(Q|D) of observing the query) =
(1, ..., qm) is approximated as:

m

P(Q|D) = HP(%‘\CH, N )

i=1

Following the assumption that the probability of observihg wordg; in the
context history of the precedirig- 1 words can be approximated by the probability
of observing it in the preceding — 1 words (" order Markov property):

m

P(Q|D) ~ HP(Qi|qi7(n71)7' .- 7Qi—1aD)

i=1

The conditional probability can be calculated from n-graegtiency counts:

#(Qif(nfl)a s i1, Ghy D)
#(Qi—(n—l)v <o i1, D)

Thebigramandtrigram language models correspond to language models with
n = 2 andn = 3, respectively. Similar to the unigram model, n-gram modéss
suffer from the problem of probability estimation. Henamo®thing technique is
also required to overcome this problem. The occurrencegrhlns or trigrams
in the document to some extent are rather rare comparingetarttyram. More
details on the smoothing techniques with n-gram modelsh(ssscGood-Turing
discounting, Witten-Bell discounting, etc.) can be foundljelinek 1998

Although the standard language models have yielded goddrpence in
text retrieval, several works have investigated further ke of more advanced
representations of words within this framework. G&mapet al. 2004 and Lee
[Leeet al.2004 proposed to incorporate syntactic dependencies streiatuthe
language model. These models definetiniage over query terms which is
related automatically through a parse in document. Howdkere is a certain
ambiguity in the way the linkage is used in this model. As psinhout in

P(Qi|Qi—(n—1)7 s i1, D) =
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[Maisonnasset al. 2008, this model is theoretically inconsistent to represent
graphical structure in the language modeling approach to IR.

In contrast, Maisonnassé/pisonnasset al.200§ relied on the notion of
graph model to integrate the relation between conceptsifatiguage modeling.
Concepts and semantic relations are extracted from knowlestgirce such
as UMLS" for medical concepts. The authors also proved that the use of
concept and the semantic relation on graph achieved a siilbbstianprovement
over purely term-based language models (such as unigranm-gina@m model).
Based on this work, we will extend the graph-based languagdehmgy in
[Maisonnasset al. 2009 to take into account of the visual elements and their
spatial relations in a unified framework for image retrieval

3.3.4 Language modeling for image classification

Language modeling has also been applied for capturing diteasmformation
of the BOW models for image classification. Tirilly et dlifilly et al.200§
proposed to use the principal component analysis (PCA) totfiedmain axis
of visual words to be extracted from object. Keypoints arentlorthogonally
projected back to main axis to construct a visual sentencee authors also
applied the pLSA method in order to eliminate the noisy Visvards. Then-
gramsmodel is estimated for each object. The retrieval processnidar to
the one of textual document in standard language model. mathod has been
experimented on CALTECH-101 image dataset and obtained aigirgnresult
for image classification. However, this method is limitedte object per image
because of its sensibility in selecting the main axis with PG¥oreover, the
spatial relation of visual word in this case needs more egilan.

(b)

6 5 102 274 798 12 101
e
41 6 27 72 6 36 101

Figure 3.1: Visual words are considered as words in a viseatesice. The
construction is followed by two steps: (a) main axis is defiby PCA and (b)
keypoints is then orthogonally projected back to main axisonstruct a sentence.

Similar work has been exploited by Wu et alWi{l et al.2007. Image
is divided into regular patches. Each patch is conditigndépendent on the
neighbors from top and from left of the current patch. Thlatien is interesting

lUnified Medical Language System
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in the sense that it captures the most basic relation in imdgeh is analogous to
the relation of words in a document. Three language modelgam bigrams
andtrigrams) constructed follow strictly the theoretical language mlodror this
reason, the model is hard to extend for more complicatetioalaetween visual
words.

3.4 Discriminative approaches

Unlike the generative approach, which is based on the prlidtatbprinciple,
the discriminative approach treats each document as a posdme geometric
space. There is no explicit assumption on the data itselie g@inciple is "let
data speaks”, which means the model will find the decisiombaty to separate
automatically the annotated samples for the training setlae generalizes to the
test sets.

3.4.1 Nearest neighbors approach

Nearest neighbors ( or k-NN) is a well-known method for obgassification
in pattern recognitionghakhnaroviclet al. 2005. The main principle is to match
a test sample to the given training samples. An object isifilad by amajority
vote of its neighbors, with the object being assigned to the alagst common
amongst itst nearest neighborg: (is usually small). Ifk = 1, then the object is
simply assigned to the class of its nearest neighbors.

A drawback to the basimajority votingclassification is that classes with the
more frequent examples tend to dominate the prediction @ingw sample, as
they tend to come up in thenearest neighbors when the neighbors are computed
due to their large number. One way to overcome this probleta 8eight the
classification taking into account the distance from thépgest to each of its:
nearest neighbors.

3.4.2 Support Vector Machines (SVM)

SVM is the most popular discriminative algorithm for cldisition. In-
troduced by Vapnik in 1995\Mapnik 1999, SVM has since become one of
the most developed classification algorithms, especiallyphttern recognition.
The strength of SVM is twofold: in terms of maximizing the mas around
the separator hyperplane it provides good capacity of gdimation and the
application of kernel allow it to solve the problem of nondar separable space.

Figure3.2illustrates the operation of SVM for classification in a Bmepace
of two dimensions. H denotes the hyperplane which separated white dots and



36 Chapter 3. Image Modeling and Learning

Xz
N/ AN
° o O
e v
. b (\]
. e o s
4 + N
A
| 4 4
® /.
y Sy
Ve 4 /|
, )
, o o
’ ’
, ’ O~o0
7/ 7
H O
7 /Q O
s s
A, 6 y x

Figure 3.2: SVM is to search for the maximal margin that sefesrthe training
set in a linear space of two dimensions. In this case, theitigiset is separable.

black dots.

Let £ be the set of training points, where each painhas m attributes (i.e.
vector of dimensionality m) and belongs to one of two clagses {—1,+1}.
Here we assume the data are linearly separable, meaningvéhaan draw a
hyperplane on the spage This hyperplane can be describeddby z; — b = 0
where:

e w is normal to the hyperplane.

e 2 is the perpendicular distance from the hyperplane to thgirori

[[w]]

Then the goal is to minimize the valllev|| of the margin such that the objec-
tive function is maximum. Minimizing|w|| is equivalent to minimizing}||w||?
and the use of this term makes it possible to perform QuadPatigramming (QP)
optimization . Therefore, we need to find:

1 9
mm§|]w|]
subject to
yi(w-z; —b) —1>0,Vi

In order to cater for the constraints in this minimizatiore meed to allocate
them Lagrange multipliersy;. It can be shown that this is equivalent to the
minimization of;

S
min {2 |[w|* — > aily(wexi =) —1]}

i=1
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with o; > 0 and under constraint_; , o;y; = 0. This can be achieved by
the use of standard QP methods. Once we obtained the solgtibor« of the
minimization problem, the optimal hyperplatwe,, by) will be defined by:

i=1
_ 0
Wo = E QY4
n

Points corresponding to solutier? are calledsupport vectors The decision
rule for new pointe is then defined by functioffi(z) :

i=1
f(x) =) adyiw; -z =10

The sign of f(x) is usually used as binary decision. If it is positive (respety
negative), the test poimnt belongs to the class of training set with label +1
(respectively -1).

This approach can also be applied to non linear separabéevd#ét some
mapping functionsd(z) of the input feature vectors into a high-dimensional
feature space (see FiguBed). This technique is callellernel trick The kernel
trick is useful because there are many classification/ssgva problems that are
not linearly separable/repressible in the space of thet iigaiures.
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Figure 3.3: Example of Radial Basis Function (RBF) kernel mappiata from
non linear separable space to high-dimensional separpates

The kernel is expressed by the dot product of mapping funatibich gives
K(z;,x;) = ®(x;) - ®(z;). Once kerneK satisfying the Mercer conditidnthe
output function then becomes:

2symmetric and positive matrix
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=1
f(z) = Zagyz’f((ﬂ%%‘) — 0

There are different types of kernel, such as polynomial éesigmoid kernel
and radial basis kernel. But the most commonly used in pategognition is
radial basis function (RBF) kernel, defined as follows:

x—y||2

K(x,y) =€ 22

where||.|| is Ly-norm of two vectors: andy ando is the smoothing parameter of
Gaussian function. In general, this parameter is estimayeztoss validation on
the data from training set.

3.5 Structured representation approaches

Most of the learning methods described previously are basethe bag-
of-words models, thus taking into account only the visual informatia the
form of vector representation. The spatial information ameisual features
is disregarded. Although this representation is simglisthe result proved
surprisingly promising. Some efforts have been attempteda beyond this
primitive and flat representation bhg-of-wordsmodel by adding visual feature
correlation information lLazebniket al.200§. However, none of them really
considered the spatial relationship between image regidrtgs section aims
at introducing some state-of-the-art in graph represemtatvhich is popular in
interpreting structural information, and learning methéaol image matching.

3.5.1 Graph for image modeling

Graph is one of the most formal representations of struciofarmation in
computer vision Marr 1983. It is a natural way to encode the relation between
objects. A famous example of graph is presented in a bookrapater vision by
Ballard and Brown Ballard & Brown 1982. The idea is to represent structural
information of face by a set déEmplatessonnected byprings Nodes represent
the instances of face, for example: eyes, nose, mouth, étair,Edges indicate
the structural relations between these instances. Thisa®bthe most primitive
forms for representing a graph where nodes and edges iadieabbject instances
and links between them respectively. However, sufferiognfthe combinatorial
explosion issue in graph matching, the classical graptesgmtation has not been
used widely for image modeling in image retrieval.
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Figure 3.4: An example of graph representation for humane fac
[Ballard & Brown 1982.

For real image representation, nodes and edges are assowidih a set of
labels. Harchaoui and BachH@rchaoui & Bach 20(07presented their images
by a planar graph where each node corresponds to a segmegied and
edge corresponds to a link between two connected regionse iQaresting
constraint is all the regions are non-overlapping, thustarg a planar graph.
This representation is simple and intuitive, although tiferring process on these
graph representations is challenging problem. A methoddace the complexity
of this graph, combining with kernel methods, will be intuoéd in the next
section.

Figure 3.5: An example of planar graph extracted from an ama§egmented
regions are obtained by using the median RGB coldarfhaoui & Bach 2007

Conceptual graphs have been first introduced in the early ®0inodel
knowledge representation. IrS¢wa 19844 Sowa presented the theoretical
formalism for conceptual graph which was consistent andidlexor knowledge
representation. This framework can capture semantic septation of data and it
offers some useful extension which is likely applicabledtiver knowledge-based
representation such as semantic web or data mining.
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Conceptual graphs are widely considered as a chanel to exiiesepresen-
tation of image content. Figur®.6 illustrates an example of conceptual graph
extracted from a landscape scene. Nodes represent thé emitees composed
of image and directed arcs indicate semantic relations dmtwthese nodes.
Conceptual graphs have also been used for scene recogiitate]l et al. 2007
and for image retrievalQunis & Pasca 1998 With the integrating of semantic
relations, conceptual graph allows to describe better #itera of image contents
[Mulhemet al. 2001, Boutell et al. 2007.

sky — sky

- h above
/motmtak
mountain
water

water

(a) (b) (c)

Figure 3.6: Example of a conceptual graph extracted fromarahscene: (a)
original image, (b) manual segmented image, (c) concepgtaah representation.

An extension of conceptual graph is attributed relatiomapy (ARG) where
nodes and relations are associated with some attributesseyged by their
weights or their probability of contributionMulhemet al.2007]. Attributed
relational graphs have been widely used for image modelksqy 2006 and
near duplicated image detectiodhang & Chang 2004 One advantage of the
ARG is that it can be used to represent complex visual conterthe very
flexible way. Node and link can be easily embedded with soropegties, such
as weight, numeric or symbolic value or even with the estugirobabilities
[Boutell et al. 2007.

Figure 3.7 presents some of the attributes used for representing tieakp
relations between two image regions. With this represematthe spatial
relationships among regions are expressed with more slethil instance,
symbolic relationsiear andfar, or relative distancd = 0.35 and relative angle
a = 7/3, etc. However, matching the attributes relation graphsireg a special
technique to adapt to some specific problems. We will preisethie next section
some matching algorithms for graph-based image presentatithe literature.

3.5.2 Matching methods on graphs

After defining a graph based on their representation, sewerching process
on graph have been summarizedBa[lard & Brown 1982
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Brown DISIOINED  Brown BORDERING Brown INVADED  Brown SURROUNDED Green NEAR Green FAR
with blue blue BY blue BY blue blue from blue
Brown on the Brown on the Brown ABOVE Brown BELOW
RIGHT of green LEFT of green green green

Figure 3.7: Spatial relationships of region pauissjoined bordering invaded by
surrounded bynear, far, right, left, aboveandbelow[Aksoy 20086.

e Exact matching: graph isomorphism, subgraph isomorphsee Figure
3.9.

e Inexact matching: partial graph matching, attributed gragatching.

(a) (b) {c}

Figure 3.8: Exact graph matching: graph (a) has an isomsmpkiith graph (b)
and has various subgraph isomorphism with graptge)lfrd & Brown 1982.

Graph matching is related to string theoGsfield 1997 (such as substring
matching and edit distances) which is complex and costlyaijwsn. Therefore,
exact graph matching is a combinatorial problem and sulbgratching is a NP-
complete problemJlimann 1976. The deterministic algorithms run (in the worst
case) in time exponential with the size of the constructegblgs. Several works
[Shokoufandelet al. 2002 Cordellaet al. 1998 have been involved to solve the
graph matching problem in polynomial time. However, thdgerhms are very
complicated in implementation. Soft graph matching havadapt to the nature
of the application $hokoufandelet al. 2003. Hence, most of works so far have
focused on finding the approximate solutions to this problem
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To compute the similarity of conceptual graph, several matggmethods have
been proposed, such as: partial subgraph isomorphidiménn 1976, error cor-
rection graph matchingulhemet al. 2001}, median graphsJianget al. 2001].
As demonstrated inBallard & Brown 1982 the matching algorithms of con-
ceptual graph may also suffer from the computational problas they used
basically the morphological matching algorithm. I@ynis & Pasca 1993
authors proposed to use inverted file for indexing and netflief conceptual
graph extracted manually from images to accelerate thepeaince of graph
matching. Recently, Kostin et alKpstin et al. 2009 have applied probabilistic
relaxation matching technique for object recognition. jesthe fact that graph
matching is still a challenging problem, graphs are veryrpsing for structural
image representation.

Recently, applications of kernel-based methods are widebduUor semi-
supervised learningShawe-Taylor & Cristianini 20Q4Bachet al. 2004 and in
computer vision $uardet al. 2009. In [Harchaoui & Bach 2007 authors pro-
posed a method to combine graph planarity with a kernel of & S\assifier
for image classification. Image is represented as a plaa@hgn which labeled
nodes correspond to segmented regions and edges are théaraig regions.
Image graphs are fixed with the same number of segments. eR3gdishows a
simple planar graph constructed for an image. Each coloesepts a different
label and each edge encodes a spatial relation.

2800
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1313188

X
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Figure 3.9: Enumeration of paths and walks from a simplelyréyalkis a finite
sequence of neighboring vertices, whilpathis a walk such that all its vertices
are distinct (inside the rectangldjqrchaoui & Bach 2007

3333:

Kernel graph is an efficient way to solve the graph matchingblem by
soft-matching tree-walks in order tmbtain kernels computable in polynomial
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time [Harchaoui & Bach 2007 The kernels keep the underlying topological
structures of graph througialks and paths (see Figure3.9). Moreover, the
kernels also embed the local information of the segmentd(asa color histogram
of local features). Due to the computational operatiopaths the authors choose
to implement only the kernels witlvalks After defining a corresponding walks
kernel (for example Dirac kernel for exact graph matchingineen two graphs,
these parameters are then fed to SVM classifiers for trainiigs work showed
very promising results on image classification.

Likewise, Li and Wang l[i & Wang 2003 introduced a statistical modeling
approach to the problem of automatic linguistic indexingpaftures. Atwo
dimensional multiresolution hidden Markov modé¢k> MHMMSs) is used to
model the stochastic process of associating an image wattettiual description
of a concept. First of all, each image is summarized by a cidle of feature
vectors extracted and spatially arranged on a pyramid gee Figure3.10.
The 2D MHMM aims at describing statical dependence of théufeavectors
at multiresolution and their spatial relations in the saesolution. The number
of block is reduced by half at each lower resolution. Blockater resolution
cover spatially more abstract information of the image.

Resolution 1

Resolution 2

I “ Resolution 3

Figure 3.10: The hierarchical statistical dependencesacddferent resolutions
[Li & Wang 2003.

Images are trained based on given concepts. For example@dturis/ France
includes images with category description such Baris, european, historical
building, beach, landscape, water This helps to improve statically the 2D
MHMM profile for each visual concept. For a test image, featuectors are
extracted from the pyramid grid. The likelihood of the featwectors being
generated by each profiling 2D MHMM is computed. Images an&ead based
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on their likelihood with each image concept. This approacimieresting in the
sense that it considers a statistical model for each groupades. Moreover, it
takes into account the spatial information throughout tBeHMM framework.
This method has shown good accuracy and also has a highipbfenautomatic
image annotation. However, it is limited for image retrieaa the matching
process based on the Markov’s model is time consuming.

3.6 Our proposition within graph-based framewaork

Firstly, we aim to provide an alternative method for imagedelng which
can consider different type of image representations difereint visual features.
The need of a model that could take several image points afsvie one of our
objectives. We are also motivated by the fact that therdlissggap between the
low-level features model and that of the high-level sentaoties. We create an
intermediate-level image representation layer betweegersemantics and the
middle-level of concepts included various visual featualmg with the spatial
relations among them. Such image representation layer asity elescribe the
image contents, for examplehtilding is in the left of the trée“ cloud is in the
top of the building, etc.

Secondly, generative models have been around for decaddsean applied
successfully to textual retrieval. These methods are batbtigal in terms of
implementation and effective in term of computational cdgoreover, the ex-
tension of the generative matching process does existéacdmplex knowledge
representation, such as for conceptual gragai§onnasset al.200g§. To the
best of our knowledge, no one has tried to use generativeauetfor graph
matching process. In this regard, our second objective s$udy the effect and
benefit of using a probabilistic framework for matching dof tiraph-based image
representation.

Therefore, our proposition graph-based framework willude the following
original contributions to the current state-of-the art:

e A unified graph-based representation for image modeling Our goal
is to automatically deduce for each image a visual graphesgmting the
image contents. For this, image regions are automaticalp@ated with
the visual concepts, and spatial relations are used fotisgdanks between
these regions and keypoints. The frequency of visual cdacapd their
relations are also captured as the weights in our visuahgrap

The advantage of this model is that it offers an intuitiverespntation
of image content. Moreover, by allowing the user to seleet ithage
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representations (such as visual concepts) and the spelkidions to be
considered it can be more easily matched to a particularercategory.

e A generative matching method using language modelinglo reduce the
computational cost, we propose to use the language modeliggnerative
graph matching process. Unfortunately, the current canedépanguage
modeling framework is limited to only a set of concept andtao$eelation
[Maisonnasset al.200§. Therefore, we will extend the theory of this
framework in order to take in to account of multiple conceptssand
multiple relation sets. To do that, we have to make seveddpendence
assumptions based on the concept sets and relation set. sé/prapose
a simple smoothing method for the probability estimatiorcoficept and
relation in this framework.

3.7 Conclusion

To summarize, in this chapter we surveyed the current legrmnodels,
such as generative approaches and discriminative apm®acihhe important
theoretical aspect of the language modeling inspired froformation retrieval
is also provided in sectio®.3. Furthermore, we have investigated different
structured image representations on image modeling, famte conceptual
graph and attributed relational graph. We have also stushate graph matching
methods based on discriminative approach (such as emlgeolddaths and walks
in kernel based classification) or generative approacheh @s Markov’s model
and language modeling). Motivated by the limitation of tlwerent state-of-the-
art methods, we have proposed a new approach based on tlelgrsgd image
representation and a generative process for graph matching

The next part contributes on designing the proposal metAsdaid, chapter
4 explains how the framework works with three principal stepgge processing,
graph modeling and graph retrieval. Cha@etetails the graph formulation and
the graph matching based on the language modeling. We walsgime examples
to illustrate the constructed graph and how we compute kieéihiood probability
for a pair of graphs.
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Chapter 4

Proposed Approach

Design is not just what it looks like and feels like. Designas/fit works.
Steve Jobs

4.1 Framework overview

Inspired by the bag-of-word model, images are modeled as afsesual
words (concepts) described and supported by differentalifeatures and rep-
resentations.. As we explained previously, our goal is toraatically deduce,
from a given image, a graph that represents the image cor8anh a graph will
contain concepts directly associated with the elementseptein the image, as
well as spatial relations which express how concepts aataein the image.

The reason that we have choosen graph as the image reptesensa
due to its capacity of embedding complex symbolic relatiand attributes of
concepts (such as numerical value or probability estimatidlternatively, with
this presentation we can apply an extension of language Imgdevhich is a
generative probabilistic model, for the graph retrievalgass.

To do so, we present in this section the system architechatecbnsists of
three main stages (see Figurd).

1. Image processingaims at extracting image regions (i.e., segmentation, grid
partition or saliency point detection) from the image. Bakonsists of
computing the numerical feature vectors (e.g., color, ddgemgram, and
local feature information) associated with regions oresaly points.

2. Graph modeling consists of two main steps. First, extracted image
regions that are visually similar will be grouped into clkrst using an
unsupervised learning algorithm (e.g., k-means clugggrirEach cluster
is then associated with a visual concept. The second praoesssts of
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Eiffel, tower, Paris,
sky, tree, grass

Figure 4.1: System architecture of the graph-based modéehfage retrieval.

generating the spatial relations between the visual cdaceffter these
two steps, each image is represented by a visual graph getdérmam a set
of visual concepts and a set of spatial relations among theal/'concepts.

3. Graph retrieval is to retrieve images relevant to a new image query. Query
graphs are generated following the graph modeling steprithesicabove.
Inspired by the language model for text retrieval, we extiiglframework
for matching the query graph with the trained graph from th&adase.
Images are then ranked based on their probabilities of thegmonding
graphs.

Indeed, these three phrases are clearly distinct from eter. oThey can
be associated with the three layers of a classical paradigmaichine vision of
Marr as introduced in chaptér the processing laye(1), themapping layer(2),
the high-level interpretation laye(3). Our contributions are mainly related to
the graph modeling and graph retrieval problem. In the grapteling step, we
propose a unified graph-based framework for image reprasemt After that,
we propose a graph matching algorithm based on the extensite language
model that was initially proposed in the information reteecommunity. We will
describe these steps in the following sections.

4.2 Image processing

Given an imagd, finding a good representation of image content is a difficult
task. In the literature, we can find various techniques faxgensegmentation.
In this section, we present three segmentation techniguesage content that
have been applied in our experimentations. As we concentraire on the
graph modeling process, we choose simple and popular tpodsifor image
segmenting, such as pixel sampling, grid partitioning agypkint detection.
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Figure 4.2: Image processing pipeline: (1) Image decontiposi(2) Feature
extraction.

From these primitive regions, we extract different visusdtlires (such as
color, edge orientation and scale invariant features)sélfieatures are associated
with one type of image region to represent an image reprasent(or a point of
view). Our objective is to provide a common framework to efifesly represent
the different viewpoints of image contents using a graphehod

4.2.1 Image decomposition

Image region is the primitive part of image representatiddlassical ap-
proaches for image representation consider image as a whasler to take
into account of the global visual information of image carite Recently,
local region approaches try to represent an image as a caioposf different
objects (or different parts of object). Several segmematiechniques have been
proposed (e.g., N-cut segmentati@n[et al. 1998 and mean-shift segmentation
[Comaniciu & Meer 200p. However, these techniques are more computation-
ally consuming compared to the simple technique such as gaititioning
[Lim & Jin 2005. Therefore, we present here three types of image regioed us
in our work as depicted in figur4.3.

e Pixel samplingis the basic form of image representation. The idea is to
down-sample the image into smaller set of pixels (i.e., iehgmbnai).
Considering equal size rectangles, each image is decompusedl set of
n x m regular rectangles. For each of these rectangles, onletiteicpixel
is considered to represent the contents of this image redibis method
requires less computational effort as the features aradreomputed.
However, large amount of visual information is reducedréfie sampling.

e Grid partitioning divides the image inte x m regular rectangles with
the same size. For example, we apply a regular grid parntigpresulting
in 5 x 5 sub-windows. This value yields 25 rectangular patches &he
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(b) (c)

Figure 4.3: Image decomposing into pixel or region: (a) psampling, (b) grid
partioning and (c) keypoint detection.

image which is a good tradeoff between the visual contentthagatch
size. In contrast to the pixel sampling, this method pre=eall the visual
information contained in the image patches. However, iuieg much
more effort to extract good visual features from these pEsch

¢ Keypoint detectionidentifies the locations in the image which contain rich
information according to some invariant features. Thesatpgossess
some invariant properties to image transformations (effjne, scale and
rotation). The salient points have shown good performarncesbject
recognition with very high accuracy on certain kind of rigodbjects
(building, car, bicycle, etc.)lowe 2004. Salient points are detected based
on the multi-scale filters (e.g., Different of Gaussian (DP{@ the scale
space. The result is a set of keypoints associated with kbeations and
scales.

Indeed, invariant keypoints give a good compromise betwerel sam-
pling and grid segmenting for image representation. It mby &eeps the
important regions of an image but also reduces the computdtcost to
generate a set of visual feartures.

4.2.2 Feature extraction

The feature extraction step aims at representing eachrregia set of feature
vectors for clustering purposes. We consider here sevesabahfeatures (i.e.,
several points of views) extracted from one pixel or for amag® region. We
denoted the set of visual features/&swhich f is a specific visual feature from
F extracted from an image region.

For the pixel sampling method, each region is representets logntral pixel.
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The HSV color value of this pixel can be used as visual featareepresent
images. Each pixel is represented by a 3 dimensional vedterchoose to focus
on the HSV color space because of its robustness agaimsiniftion changes.

For image regions, several visual features can be extraCwldr histograms
and edge descriptordMonet al.2007 are frequently used as visual features
for image patches as mentioned in chap?er For the keypoint extraction,
SIFT descriptors Lowe 1999 are extracted within a given radius around the
keypoint. Note that, we can extract the same visual feallargs, color and edge
histogram) for the keypoint knowing the region coveringuand this keypoint.
The dimensionality for each type of visual feature is sumnearin Tabled.l

Table 4.1: Summary of visual features used for each typeppésentation.

Feature type f Quantization Dimensions
(H,S,V) value 3 bins 3
HSV histogram 4 x4 x 4 bins 64
Edge histogram 16 patches x 5 edge types 80
SIFT descriptor 16 patches x 8 orientations 128

4.3 Visual graph modeling

After the image processing step, we obtain a set of visualifes extracted
from image regions. These features are used for visual pbrearning using the
unsupervised learning method. These visual conceptsthgeith the spatial
relations, allow us to form the visual graph which betterrespnts the image
content. Figurel.4shows the pipeline of our graph modeling process.

4.3.1 Visual concept learning

Given a set of feature® extracted from regions or keypoints, the goal of the
training stage is to classify these feature vectors intdimaogenous groups that
can be represented by a set of visual concepts. For this geirpee apply the
k-means algorithm to the pool of feature sétand cluster them to theclusters.
The clustering algorithm is applied to the set of featuretmec The result is
a set of numerical label; associated with each image region or keypoint. For
each visual featur¢ € F, a corresponding visual vocabula®y is created. The
number of clusters is the number of visual concepts cordamtne corresponding
visual vocabulary.
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Figure 4.4: Visual graph modeling pipeline for image cdileg.

The reasons why we choose the- means clustering method, as presented
in chapter2, for visual concept learning over the other methods, suckMs
clustering[Moore 1998, are twofold:

e It is a popular technique used in image retrieval thanks sosimple
implementation and it requires minimum number of parem@eteperate.

e For language modeling, an important assumption over theloncepts is
that the probability follows thenultinomial distributiorwhere the random
variables have discrete values. Therefore, other segtmant&chniques
are not valid under this framework.

The visual concept learning step will be discussed furthehé future works in
chapter8. Meanwhile, we rely on the common bag-of-words represimtat
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4.3.2 Visual graph construction

Concept set generation

From the constructed visual vocabuld@ty and for each image, we will build
a set of visual concepts that represents its visual conteinst, a set of visual
features will be extracted for the corresponding imageoregsuch as pixel,
region or keypoint. Then, the next process assigns eacheimagjon to the
nearest cluster based on the distance of the vector quapfai this visual feature
and the centroid vector of each cluster. Finally, imageareds denoted by a
correspondingisual concep(or conceptin short)¢; that it has been associated
to.

Taking the bridge scene in figu#5 as an example, we can see that the
visual concepts are assigned to the corresponding patdtestlae concept
set quantization. More precisely, the conceptcorresponds to the “tree”,
while conceptc, and c; are more likely associated with the “bridge”. In this
way, this image can be denoted by a set of symbolic conceptsingtance
{cl,cl,cl,c2,¢2,c2,¢3,¢3, c4}.

Relation set extraction

Once these visual concepts are defined and characterizepeindently, the
last step is to define the relationships among them. Existongs have suggested
the use of topological relations between poirEgé¢nhofer & Herring 1991or
between regionsHoutell et al. 2007, Aksoy 2008. Inspired by these works, we
will define the similar relationships between the regions legypoints. Although,
different from the latter approaches, the relation in ourtexgt is stricly symbolic
in the sense that it does not take into account any relatiobwes. The attributed
relation will be addressed as part of the future work.

Figure 4.5: Example of spatial relations extracted fromgma (a) scene of a
bridge, (b) visual concept generation, (c) relatideit of andtop_of extracted
from concepts
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We denote a labeled relation &and a set of labeled relations 4s Figure
4.5 gives an example of spatial relations between visual cdeosjth STOIC
collection used in chapté. Relation set€ = {left of,top_of} are extracted
from the two connected concepts. These relations help tueaphe spatial co-
occurrence information of two visual concepts. For exampistances of the
concept “sky” are usually in théop_of instances of the concept “tree”, while
instances of concept “tree” appears more frequently indlié of instances of
concept “bridge”. If the number of training images is largoegh, the graph
framework will capture the statistical consistency fosttyipe of relation.

Similar to the above, we can denote these relation sets ggimbolic repre-
sentation, for examplg(c1,c1,leftof), (c1,c2,leftof), (c1,c3,leftof), (c3,c2,leftof)},
(c3,c4 leftof), (c4,c2,leftof) and {(c1,c1,topof), (c1,c3,topof), (c1,c3,topof),
(c3,c4,topof)}, (c2,c2,topof), (c2,c2,topof).

Graph formulation

At the end of the graph construction procedure, we obtaint afsgisual
concept; and a set of predefined relation$ for each type of concept and
relation/. Each concept is associated with a weight that representsiinber
of occurrences in the image. Similarly, each relation i® ag/en a weight
corresponding to the number of times this relation has @eduin the image.
We will denote the weighted concepts setiby'; and the weighted relations set
by W E,. As we may have several image representations (or pointwafs)iand
different kind of spatial relationships between them, weale a set of weighted
concept sets aswc, = U;crWC; and a set of weighted relation sets as
Swe, = U, WE; for animagel.

Given a graph which is represented theoreticaly by a setdésand a set of
arcs. We map the set of concept sgjis-,. and the set of relation setgy .. to the
set of nodes and to the set of arcs respectively. In our casegewote this graph
as a visual grapltr =< Swc,, Swe, >. The weight of concepts and relations
are also mapped with the corresponding nodes and arcs. Viseise graphs are
then stored in the graph database.

By using the graph-based representation, we can includeradewvaage
representations (i.e., different point of views) into teneric framework. Note
that we tend to choose different representations for imagens (i.e., patch,
keypoint) and visual features (i.e., color, edge, SIFT)ckhare considered
visually independent of each other to represent image nonté&erefore, concept
setsWWC; are disjoint. From this stand point, we will make an indeperid
assumption based on the set of weighted concept Sgts.. The similar
assumption is also applied to weighted relation $gts;.. The details of graph
formulation will be given in sectiob.2 of the next chapter.
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4.4 Visual graph retrieval

Once the visual graphs are established based on the coretsparsd the
relation sets, the next question is how we can compare a negeragainst the
document graphs stored in our database. FiguBeshows the pipeline for our
graph retrieval scheme. The retrieval scheme includes tini@n stages:

Document graphs

Query graph

Visual graph Graph
construction ) matching
O O,

Query image Graph
ranking

O,

Ranked
list

Figure 4.6: Graph retrieval pipeline for a query image

1. Given a query imagég, we follow the same process gfaph modelingas
above to extract the visual feature and cluster them inteadisoncepts. The
same type of spatial relations are also extracted from theeps. From
these concept sets and relation sets, a visual graph folimage G’¢ is
automatically generated.

2. Graph matching consists of comparing the user query gr&phi with the
trained graphg:/? stored in our database. Inspired by the language model
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from the IR domain, which is a generative model, we extersiftaimework
to take into the account of the multiple concepts and metiglations
embedded in our graph-based model. We compute the pradishitif

generating of the concept sets and the relation sets asguwontept sets
and relation set are independent.

3. Graph ranking consists of the computing of relevance status values of the
document graph and the query graph in the log-probabiliacep Finally,
document images are ranked based on their relevance vakmsaed with
the documents graphs.

4.5 Discussion

In this chapter, we have given an overview of the system implged in
our work. It includes three main layers: tiraage processingpyer, thegraph
modelinglayer and thegraph matchinglayer. The main contributions of this
thesis are related to the graph modeling layer and the gragiching layer.
These contributions rely on the graph-based presentafieomage content and
the extension of language modeling for graph matching.

The graph modeling consists steps of visual concepts earigtn and spatial
relation extraction. The visual concepts are learned froenldw-level features
(e.g., color, edge, and local features) which are computedtty from different
type of image representations such as pixels, patches at kaypoints, etc.
The visual concepts learning phrase which consists of magpthe low-level
image features into a discrete space of the visual vocabidalone by thek-
means clustering algorithimn the other words, the visual concepts represent the
middle layer of image representation. To complete the glzgded representation,
spatial relations are extracted from the visual conceptshduld be considered
that our visual graph model, which adds another layer abbeeconceptual
layer, represents thmmtermediate layeof image representation approaching the
semantics layer

The graph matching stage consists of generating the pidbebiof new
graph from the trained graphs in our database. The clasgipabaches of graph
matching are usually complicated and time consuming. Toe¥ewe would
like to address another perspective of graph matching basetie generative
probabilistic frameworkof language modelingThis approach is simple in term
of computational perfomance, as well as a well-foundedrthéom IR fields.
The language model has been successful in the text retdevadin. Moreover,
the extension of this model is straightforward from our drdqased model. The
next chapter will detail our proposed approach for imageenel.



Chapter 5

Visual Graph Modeling and
Retrieval

5.1 Introduction

In the previous chapter, we have presented an overview ofj@ph-based
system. This system composes of three main stagesmége processing step
the visual graph modeling stepand thevisual graph retrieval step The image
processing step provides the tool for extracting the lovellgisual features (such
as color, texture or edge). The visual graph modeling stelpdes two processes.
First, it automatically induces a set of visual concept floset of visual features
based on the unsupervised learning algorithm, e.g., k-selaistering. Second,
the relation extractor generates a set of spatial relatronsthe constructed visual
concepts. Finally, a visual graph is formulated from thedeo§ concepts and set
of relations. The visual graph retrieval process consistmaiching the query
image graph with the graphs stored in the database and raeksults using
their probability values.

The goal of this chapter is to define formally the visual grapddel and to
describe the matching process based on the formalism ofi¢megmodeling. We
will show some examples of graph instance derived from timexge graph model.
As we have shown in the chapt&rthe main bottleneck of using the graph-based
image representation is the matching step. In the liteeaggnaph matching with
classical algorithm is a costly process. To avoid that gabhlnd to provide a
more reliable matching algorithm, we rely on the idea of lzaxge modeling for
generating the query graph from the document graphs in ttebdse. Graphs
are then ranked with their corresponding probability likebd values. As a
consequence, images are ranked in the lists with the sareeaifrtheir relevance
values. As we will show in chapt&; the proposed graph model may also be used
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for image categorization. The category of a query image ¢&deel based on the
class of the image which maximizes this probability likelial.

This chapter is structured into 5 sections. SecBaintroduces a formal
definition of our visual graph. Also, we give some examplegraiph instances
used in our application. Sectidn3 will show how visual graphs are matched
using our extended language modeling framework. We als® gjivexample on
how we compute the probability likelihood in sectiérB.4 Then, sectiorb.4
discusses how we actually rank our graph retrieval reswdtisguthe relevance
status value. Finally, we conclude the chapter and give sosight discussions
in section5.5.

5.2 Visual graph formulation

5.2.1 Definition

In this section, we introduce a set of formal definitions agged with the
visual graph. To facilitate reading, the following notatsowill be used:

(] :animage

G : visual graph for imagé

F : set of visual features associated with an image region
f - alow-level visual featuref € F

L : set of possible labeled relations

[ : label of relation] € £

C; : set of concepts (or visual vocabulary) extracted for a featu
c : avisual concept; € C;

E, : set of concept pairs extracted for a relation labéled
c,d,l:alabeled relatior; € Cy, ' € Cpr,l € L

W} : weighted concept set

W E; : weighted relation set

Swe, : set of weighted concept sBtC'y

Swe, : set of weighted relation sét’ £

\

Our visual graph may contain different sets of visual coteegets and
different sets of relation sets, which reflects multiplenp®iof views (i.e., image
decompositions and low-level visual features). Each Visoacept is constructed
for each type of image region and its low-level feature fréwa tollection as in
section4.2 Figure5.1shows how we formulate the set of concept set and the set
of relation set from a collection’ and then transfer them to the formulation of
imagel.
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Collection C

Figure 5.1: Formulation of the set of concept set and setlafioa set from the
image collectiorC' and for the imagé.

Definition 1 Let F be the set of low-level features. For each featfire F, C}
Is the concept set extracted for featyref an imagel:

Cf={clceCy I}

where ¢ is a visual concept that characterizes imdge Assuming the
concept set independent hypothesis, we have:

(ci=0

fer

Definition 2 Given the concept se(t’]{, WC]{ denotes a weighted concept set
which contains a set of paifs, #(c, I)):

WC’; ={(c,#(c,I))|c € C'J]c}

where+(c, I) is the number of times a visual conceiccurs in the image
I. The weight of concept captures the importance of this qanicethe

image. By defauItWC]{ captures only the visual concepthat appears in
the image, which mean%(c, /) > 0.

Definition 3 The set of weighted concept se$$vcf is a union of weighted
concept set$’ C':

Swve, = WY

feFr
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Assuming the concept set independent hypothesis, the teeigioncept
sets are disjoint. We get:

(Ywci =0

fer

Similarly, we define the relation sets extracted from thei@isoncepts for an
image! as follows.

Definition 5 Let £ be the set of the possible labels. For each labeled relation
| € L, the relation sef/ is defined by:
El = {((c,d),D|(c, ) € C'fc X CJ{,,Z €L}
where(c, ') is a pair of concept extracted from two concept sié}%md
C},, and! is a relation that occurs in the image

If a pair of conceptsc, ¢’) comes from the same concept set (K@. = C1L),
we refer this relation set astra-relation set. Otherwise, if it comes from
two concept sets extracted from different visual features, CJ{ £ C1),
we refer this relation set aster-relationset.

Assuming the relation set independent hypothesis, we have:

E =0

lel
Definition 6 Given relation sefz/, W E] denotes a weighted relation set which
represented by a set of tripl&t, '), [, #(c, ¢, 1, I)):
WE! ={((c,),l,#(c,c,1,I))|(c,c) € C’; X Cfc,,l e L}
where#(c, ¢, 1, I) is the number of times and¢’ are related with label
in image!. The weight of relation signifies the relation importanceles

frequency appeared in the image. By default, we capture twlydlation
that appears in the imadetherefore#(c, ¢, 1, I) > 0.

Definition 7 The set of weighted relation sef ;. is a union of weighted
relation set$V E/:

lel

Assuming the relation set independent hypothesis, thdiorlaets are
disjoint. We have:

(WE =0
lel
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Definition 3 and7 are important as they provide the generality of our visual
graph model. As pointed out earlier, the visual graph caegiatte smoothly
different image points of views, as well as the relations agnthem. Moreover,
extracting visual concepts and spatial relation from imegetent is a difficult
task (like in text retrieval domain). Visual concepts anldtiens are sometimes
defined in a subjective way. Therefore, the independencethgpes based on the
concept sets and relation sets have been stated clearlgilitata our proposition
of graph retrieval in the next section.

Finally, the set of concept seff, ., and the set of relation sety, , are
mapped to the set of nodes and the set of arcs respectivebyrigraph-based
framework. The following is the definition of visual graph image!.

Definition 9 Given a set of weighted concept sé&t&cf and a set of weighted
relation setsSy, , for an image/, the visual graplt;’ is defined by:

I I I
G =< SWC]:7SWE£ >

The definition of our visual graph model provides a generamiwork which
allows us to derive to different graph instances. Dependmthe visual contents
of image, for example: outdoor scenary, building or inddootps, we can create
different visual graph instances to fit the image contenhis graph framework.
In the next section, we will present two graph examples usedir experiments.

5.2.2 Graph instance 1

In this section, we illustrate how the visual graph modelasstructed from
one concept set and two relation sets. This graph instanaesad in our
experiment with the STOIC-101 image collection. Most of thefos are captured
famous scenes of Singapore landmarks and are mostly ostd®de build the
concept set based on the patch-based division and extecotar information
from these patches. We denote this concept s€t.as = {cl,c2,¢3,...,cN},
whereN are the number of concept defined for this visual vocabulary.

Nevertheless, spatial information embedded in these phstan important
factor. Firstly, these photos were taken for touristic msgs. Most of the
photos are centered with the main object. Second, imagasn@s#y in portrait
or landscape mode. Therefore, the vertical and horizontatmation are very
useful clues for recognizing of the image content. For eXdamihe sky is
above the buildings, trees are next to the statue, river lswbthe bridge etc.
For these reasons, we decide to choose two type of spatélored, denoted
L ={left of,top_of}, extracted from the concept €&t,,,.. Theleft of indicates
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C1-+-C1--C1 1 =left_of 1,=top_of
| n L

left_of, 1

Figure 5.2: Example of a visual graph extracted from STOI@gmcollection.
Concepts are represented by nodes and spatial relationspaeseed by directed
arcs. Nodes and arcs are weighted by the number of times fisaain the
image.

the horizontal relation between a pair of concepts. In theesaay, thetop_of
indicates the vertical relation between a pair of concepts.

Figure5.2shows an example of the visual graph constructed from angrofg
a bridge scene. This example corresponds to a visual graghiomg one visual
concept sef..;,» and two intra-relation sets;. s, ,y andEy,, ,;. The visual graph
for an imageG’ =< Sy, Sfyp, > is composed of:

e The set of concept set contains one weighted concept’s&t,,,. extracted
from color feature, denoteﬂ&,cﬁ = WC ... In the figure, each node
corresponds to a concept and the number of time it occurseinntiage.
For example, conceptl appeared 3 times in the image and is denoted by
(c1,3), concept2 appeared 2 times in the image and is denote¢by?2)
etc.

e The set of relation seféVEL contains two intra-relation sets;.s, ,; and
Eiopor €Xtracted from two spatial relatios = le ft_of andl2 = top_of,
denoted byS{},EE = WEiett.of UW Eiop 0. The relation between a couple
of concepts is captured by the directed arcs in this graplecigaly, the
blue arcs express the relatibrft_of and the green arcs express the relation
top_of between two concepts. For example, coneeps related to concept
c2 with the relationtop_of 2 times and is related to itself by the relation
left_of 2 times. Itis denoted byrl, c2, top_of,2) and(cl, cl,left of,2).

5.2.3 Graph instance 2

The second example is a graph instance extracted from twoepobrsets
and one relation set. The idea is to integrate different enegpresentations
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(such as patch division and keypoints as described in ch@ptegether with
their relations to represent a unique view of image conteriteage patches
are characterized by a set of visual features, such as cedures and edge
features. These features capture the global informatiaiefobjects. On the
other hand, the visual feature extracted from keypointsesgmt the details of
the objects. We denote two concept setas., = {pl,p2,p3,....pN} and
Csist = {sl1,s2,s3,...,sM}, where N, M are the number of visual concepts
defined for each visual vocabulary. The co-occurrence m&dion between two
concept set is denoted by the relatibn= {inside} if one keypoint is localized
inside the area of an image patch.

Patches

WEinside

SIFT points

Figure 5.3: Example of a visual graph extracted from twoedéht visual concept
sets and related by a set of relatioide.

Figure5.3shows an example of an image and the corresponding visyath gra
constructed. The above graph example corresponds to d gisydh containing
two visual concept setspatch, sift and one inter-relation séi;,, ;... The visual
graph for an imagé&:’ =< Sy, _, Sy, > is then composed of:

e The set of concept set contains two weighted concept1$&ts,,., and
WCsift extracted from color and edge features and SIFT featurestee
chf = WChuch UW . In the figure, the set of node above
corresponds to a concept gbt,.;, and the set of node below corresponds to
a concept sef; ;. For each node, the weight is calculated by the number
of time its occurrence in the image. For example, congéjuif concept set
Csist appeared 5 times in the image and is denotetkby5). Concepip2 of
concept sef,,.., appeared 2 times in the image and is denote(hby2)

e The set of relation set contains a weighted inter-relateis 18’ £;,,4;4. €X-
tracted from two concept sefS.;c, andCy; g, denotedSyy ;. = W Einside-
Similar to above, the relation between a couple of conceptsd captured
by the directed arcs in this graph. For example, coneéps linked to
conceptpl with the relationinside for 1 times and is related to concept
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p2 for 2 times. These relations are denoted (BY, p1, inside, 1) and
(s1,p2,inside, 2).

After defining the representation for graphs, we turn to thebjem of
matching a query graph with the document graphs. The larggomanglel defined
over the conceptual graph proposed Majsonnasset al.2009 is considered
only one concept set and one relation set in the same timehelméxt section
we will explain how we extend this framework to take into amebof multiple
concept sets and multiple relation sets in our visual gragtthing method.

5.3 Graph matching for image retrieval

For a new image query, our objective is to provide the relephotos from the
collection that match the user needs. Inspired by the indtion retrieval theory,
we define here three models:

e Document graph modelG’? is extracted from the document image in
the collection.

e Query graph model G'? is constructed for a new query image with the
same configuration as the document graph model.

e Matching model M (G'%, G?) includes a ranking function that computes
the probability for generating query graph mod&F from the document
graph modetG’9,

Figure 5.4 provides the common diagram for image indexing and retrieva
process in our graph-based model. First, we generate fos¢heof image
documents in the collection a set of corresponding graphes@ models are then
stored in our database for matching purpose. A graph modgdsasconstructed
for the image query. Then, the matching model takes into wtcof both
guery graph model and document graph model to compute thiastynof these
graph models. Finally, images are ranked based on theifasityivalues of the
document graph models.

5.3.1 Query likelihood ranking

Inspired by the language modeling approach proposed indbe8i3, the
matching modeM (G4, G*?) ranks the image documents based on the probabil-
ity of generating the query graph model from the documemlyraodels, which
is defined by:

M(G", G = rankigec{ P(G"YG'?), Id} (5.1)
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Graph Indexing

Document images (Id)

Query image (Iq)

Graph Retrieval

Query graph
model (Gq)

Document graph
models (Gd)

Matching
Model (M)

[ Y
Image Ranking
=)

Figure 5.4: Flowchart for graph indexing and graph retii@gvaur system.

This is a generative model in the sense that the probabifitguery graph
generation is measured based on the probability taken fnenddcument graph
model. The probability?(G'¢|G?) indicates how likely the document grapH?
is close to the query grapfi’?. In [Maisonnasset al.2009, the probability P
has been calculated for a conceptual unigram model. Howeuegraph model
is composed of multiple concept sets, as well as, multip&ion sets. To expand
this framework, we present here an extension of the matcimadel M that
handles both set of concept sets and set of relation sets.

In other words, the probability for a query graph mo@él =< ch ,SWEL >
to be generated from a document gra@tt is composed of the probability of
generating independently the set of concept set and thd sslhton set. Using
the conditional probability rule, this can be written as:

P(G"G') = <Séscf, Siip. |G
= P( |Gld) x P( WEL|SWC;7GM) (5.2)
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whereP(S{;C |G19) is the probability of generating set of concept sets from the
document graph, anﬁ’( |S c; , G'4) is the probability of generating set of

relation set given the set of concept éégc from the document graph/’?.
To calculate this score, we will estimate separately the pnababilities: the
probability of generating concept set and probability aigmting relation set.

5.3.2 Matching of weighted concept set

For generating the probability of query concept sets from document
modeIP(S‘ﬁgcf |G14), we assume a concept set independence hypothesis (related
explanation in sectioB.2). The probability can thus be estimated as:

P(Sie 1G" = I  PWwC 6" (5.3)

wCpliesit,

Assumingconcept independenaehich is standard in information retrieval, the
number of occurrences of the concepts (i.e., the weightsidered previously)
are integrated through the use ofmaltinomialdistribution model. We compute
P(WC'|G1) as follows:

P(WCfIq|GId) — (Z # 'HP ’Gld (¢,1q)
H # : ceCy
where#(c, Iq) denotes the number of times concepiccurs in the query graph
G'1, This contribution corresponds to the unigram conceptuabability as
proposed inlMaisonnasset al. 2009.

The proportion in the above equation will not affect the niagkof the
document images for the given query imdge By omitting the constant value,
the equation leads to:

PWC Gy o [] PlelG")#ero (5.4)

ceCy

To calculate this score, we need to estimate the probasilit{c|G'? from the
document graph model. The maximum likelihood estimate dbel:

#(c,Id)

PG = 20p1 1)

where the quantity#(c, Id) represents the number of timesoccurs in the
document imag€éd. The quantity#(|D|, Id) is the total number of concept in
the document image and equalXg. #(c, Id).
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The major problem with this probability estimation is thétany of the
concepts in the query image is missing from the documentpthbability of
P(WC"|GI4) will be zero(as refered in sectioB.3). Consequently, the score
given by the query likelihood?(G?|G'4) becomeszero probability. This is
clearly not appropriate for ranking this type of image wiilehould have a small
value instead. To avoid this bottleneck, the quanfity|G'¢) is estimated through
maximum likelihood usingelinek-Mercer smoothing

P(c|G") = (1 = Ap) P(c|G") + A P(c|C)

#(c, Id) #(c,C)

TP R eN &9
where )\, is the smoothing parameter for each conceptCset Similarly, the
quantities#(c, C') and#(|C|, C') are defined over the whole collectian (i.e.,
over the union of all images in the collection).

We choose to use thdelinek-Mercer smoothindpr its simplicity and its
proved effectiveness in the text retrieval domain. In gahehe parametek;
can depend on the nature of the document such as the usetlfesuae, image
category, etc. In our case, this parameter can be optimigieg & validation set
or a cross-validation technique.

In order to respect the consistency of multinomial distiii, the probabili-
ties of the concepts must sum to one, i, P(c|G'?) = 1. It's been proved
that theJelinek-Mercer smoothingespects this prior condition. To illustrate, we
consider a simple example with only 3 concepis2 andc3, in the concept set.
Supposing that the probabilities for these concepts in tloeiishent graph are 0.6,
0.4 and 0.0. The probabilities estimated for these condaptse collection are
0.3, 0.5 and 0.2. Given a smoothing value, for examyle= 0.2, the smoothed
probability for the document graph are:

P(cl|G") = 0.6 x (1 —As) +0.3 x \; = 0.54
P(c2|G') = 0.4 x (1 = Af) +0.5 x A\ = 0.42
P(e3|GT) = 0.0 x (1 = Af) +0.2 x Ay = 0.04
Note that concept3 has zero probability. Even though, the smoothed probwgbilit

of concept:3 has non-zero score thanks to the background probabilityatsd
from the collection. In the end, we get:

Z P(c|G') = P(c1|G'Y) + P(c2|G'Y) 4 P(e3|G™)

= 0.54 4+ 0.42 + 0.04
=1.0
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which confirms that the probabilities using Jelinek-Mems®ioothing method are
consistent.

5.3.3 Matching of weighted relation set

As shown in the previous section, we follow a similar prodesgyenerating
the probability of the relation sets from document graph ehod\ssuming the
relation set independence (cf. sectmg), this leads to:

( WEﬁ |SWC;’ Gld) = H P(WEIq|SWC >Gld) (5.6)
WE{leSyl,
For the probability of generating query relation set from ttocument graph,
we assume that a relation depends only on the two linked pbse¢s. Assuming
that the relation sets are conditionally independent aliogrto the set of concept

setS{;?Cf and the graph documeait’?, and following amultinomial distribution
model, we can compute:

(Z(Cvc/»l) #(67 1, IQ))! X
[T #(c.c 1, Iq)!

I[I  Pllcd)=ywey,woi, gl#ectto
(c,c/,l)ecfxcf/xg

P( Elq’SWC]:’GId> =

where the quantity#(c, ¢, 1, Iq) is the number of time the relatidnof concept
pair (c, ¢) appears in the query gragke.

Similar to the concept set, the first proportion in the abayeagion will not
affect the final ranking. By eliminating the constant vallms equation leads to:

P(WE/"|Sylc,, GM) o (5.7)

H P(L(c,d) = ZIWC’“I WCIq | Gly#ed L)
(C,c/7l)ECf><Cf,><£

wherec € Cy, ¢ € Cp and L(c, ') are variables which values ifi reflects the
possible relation labels betweemnd(, in this relation set.

Similar to the concept set, the relation set suffers the gamolelem of zero
probability when a relation is missing from the documentpgra Hence, the
smoothing technique has been applied for the relation sdte @robabilities
P(L(c,c) = I[WC, W4, G') are estimated by maximum likelihood with
Jelinek-Mercer smoothingnethod, giving:

P(L(c,d) = IWCH, WCH,G') = (5.8)

#H(e,d 1, 1d) \ #(c,d,1,C)

(1_)\l>#(c,cl,|D|,[d) l#(c,c’,‘0’70>
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where ), is the smoothing parameter for each relation Bet The quantity
#(c, 1, Id) represents the number of times conceptnd ¢’ are linked with
label in the document imagéd, and the quantity#(c, ¢, |D|, Id) is equal to

Y e F#(ce,d 1 1d). In the same way, this parameter can be optimized by the
cross-validation technique for each relation. Note thahi of the two concepts
does not appear in the imagdeit yields:

#(c,d, 1, 1d)
#(c,,|D|, Id)

=0

Again, the quantities#(c, ., [, C) and#(c, ¢, |C|,C) are counted in a similar
way but computed on the whole collectioh(i.e., over the union of all the graphs
from all the documents in the collection).

This graph model is a generalization of the model defineBimajmet al. 2017
which corresponds to the case where only one concept see& us some
special cases, our model corresponds to the standard ig@mguadel used
in [Phamet al. 2009 where relations are not considered (i.e., documents and
gueries correspond to multiple bag-of-words model). Inrteet section, we will
give an example of graph matching with our graph models.

5.3.4 Graph matching example

For a better understanding of the graph matching functieprvide here a
simple example of matching with three graph models. Thesghgrare generated
with the graph instance 1 introduced in the previous sectiothe figure5.5 G1
andG2 are the document graphs a6ds the query graph. Intuitively, grapf1
is closer to the query graph than the latter(G1 contains the same set of concept
and have similar relation set as query graphWhile, G2 is missing a conceptt
and have less relation than the query grépiThe collection”' is then defined on
two graphs71 andG2.

Supposing that the visual graphs are constructed from 4alisancepts
(cl,¢2,¢3,c4) and two relationgll = left of,12 = top_of). Graph models
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are described as follows:

Gl =<{(c1,3),(c2,3),(c3,2),(c4,1)};
{(c1,c1,11,2),(c2,¢3,11,2), (4, c3,11,2),
(c1,¢2,12,1),(c2,¢4,12,1), (c1,¢3,12,2),(c3,¢3,12,2)} >
G2 = < {(c1,4),(c2,3),(3,2) };
{(2,¢3,11,2),(c2,c2,11,4), (c1,2,12,2), (cl, c3,12,2), (3, c3,12,2)} >
G =< {(cl,3),(c2,2),(c3,2),(c4,2)};
{(c1,c1,11,2),(c2,¢2,11,1), (2, ¢3,11,1), (4, 3,11, 2),
(c1,¢2,12,2),(c2,¢4,12,2), (c1,¢3,12,1),(¢3,¢3,12,1)} >

Document graphs

left_of, 2

C
top_of, 1 top_of, 2
top_of, 2 top_of, 2
top_of, 2
left_of, 2
top_of, 2
left_of, 4 c2
3 left_of, 2
G1 G2

Query graph G

left_of, 2

left_of, 1

left_of, 1

top_of, 2 left_of, 2

Figure 5.5: Example of matching graph with our modéll and G2 are the
document graphs from collectiari andG is the query graph.

Assuming the multinomial distribution, we calculate thelpability likelihood
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for query graph to be generated by the document géaph

P(G|G1) =P(c1|G1)*P(c2|G1)*P(c3|G1)* P(c4|G1)*x
P(L(cl,cl) = 11|G1)*P(L(c2, c2) = 11|G1) P(L(c2, c3) = [1|G1)
P(L(c4,c3) = 11|G1)?P(L(cl, c2) = 12|G1)*P(L(c2, c4) = (2|G1)?
P(L(e3,¢3) = 12|G1)P(L(cl, c3) = 12|G1)

Assuming a small value of the smoothing parameters (A\e.= \; = 0.2),
the probabilities are estimated with the Jenlinek-Merceosthing method. We
calculate the probabilities for each concept, for exanifflel |G1), as follows:

P(c1|G1) = (1 — 0.2) x P(c1|G1) + 0.2 x P(c1|C)
—0.8x3/9+0.2x7/18
= 0.344

For estimating the probabilities of the relations, for exéerP(c1, c1,[1|G1) and
P(cl,¢2,12|G1), we have:

P(L(cl,cl) =11|G1) = (1 —0.2) x P(L(cl,cl) =11|G1) + 0.2 x P(L(cl,cl) = 11|C)
=08x2/6+0.2x2/12
=0.3

P(L(cl,2) =12|G1) = (1 — 0.2) x P(L(cl,¢2) =12|G1) + 0.2 x P(L(c1,c2) = 12|C)
=0.8x2/64+02x2/12
= 0.183

Note that the relatioric2, c2,[1|G1) does not appear in the document graph G1.
Although, it still obtain a non-zero probability of 0.067 igh has been leveraged
from the collection. The final score for graph G1 is:

P(G|G1) =(0.344)%(1/3)%(2/9)%(0.1)* x (0.3)*(0.067)(1/3)(0.3)*x
(0.183)%(0.15)*(1/3)(1/3)
P(G|G1) ~3.377 x 10~

Similar to the graphz1, we calculate the probability likelihood for query
graph to be generated by the document gr@ph

P(G|G2) =P(c1|G2)*P(c2|G2)* P(c3|G2)* P(c4|G2)* x
P(L(cl,cl) = 11|G2)*P(L(c2, c2) = 11|G2)
P(L(c4,c3) = 11|G2)*P(L(cl, c2) = 12|G2)
P(L(c3,¢3) =12|G2)P(L(cl, c3) = 12|G2)

P(L(c2,¢3) = 11|G2)
2P(L(c2,c4) = 12|G2)?
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Also note that the concept does not appear in the document gréaph However
it still get a small value of 0.0111 from the collection. Thedli score for graph
G2is:

P(G|G2) =(0.433)*(1/3)(2/9)(0.011)? x (0.033)*(0.6)(0.6)(0.033)? x
(0.316)%(0.017)%(1/3)(1/3)
P(G|G2) ~6.464 x 107

As we can observe from the above scores, gr@phobtains a larger score
value compared to grapghi2, which is consistent with our initial intuition.

5.4 Ranking with relevance status value

In practice, multiplying many small numbers may lead to ntioaé precision
problems. Moreover, the multiply operation is considerentarcostly when com-
pared to the addition operation. As usual in IR, we can useilibga function to
turn the likelihood score into rank-preserving sum. As dorf@hamet al. 2009,
the relevance status value (RSV) of a document imagdor query image
Iq is computed in the log-probability domain. In the contextnafiltinomial
distributions, we have:

RSVie(G"G') = log P(G"1|G™?)
= log(P(Siic, |G') x P(Sylp, 1Shic,, G')
= log P(Syic, |G") +log P(Sily, | Syt , G')

By submitting the probabilities of the set of concept set dredset of relation set
in equation with the equatioris3and5.6, it leads to:

RSVig (GG = >~ log P(WC"|G")+
WOrlIeSil e
> log P(WE/|S). . G')

Iq,-clq
WE, GSWEL
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Again, by approximating the probabilities of the concepites®d the relation set
in the equation®.4and5.8, we get:

RSVe(G11|G™) o Z Zbg P(c|GIy#(el) |

Woslresyd o €0

> > log P(L(c.d) = IIWCE, W, GI#edblo

WEqueségEL (e, )ECHXCpr x L

x Y Y #e T xlog PG+

welaesyl,  ¢Cr

Z Z #(c,d,1,1q) x log P(L(c,c) = l]WC’;q,WCfﬂ,GM)

WE/lesyl, (e DECrxCprxL

Finally, the probabilities of the concept and relation af tiraph document are
estimated using the Jelinek-Mercer smoothing as seen jpréwous sections.
For image categorization, document images are categoiiteda specific
classes for example: “person”, “animal”, “nature”, “sport”, etcQuery image
Iq is matched against the document images and then classifeethim class of

the closest document imagde given by the following estimate:

class(Iq) = class(arg max RSV, (G"1|G')) (5.9)
IdeC

More details on the classification task will be given in theexment part of the
next chapter.

5.5 Conclusion

We have presented in this chapter the formulation of theaVigtaph model
and the graph matching algorithm inspired by the languageetmy from
information retrieval. The visual graph is defined from aafetoncept sets and
a set of relation sets. The visual concept set is achievedhbge segmentation,
feature extraction and by visual concept learning. Thetiorlaset is generated
based on the predefined extraction rules. The proposed gnaggl reflects the
modern approach in the contend-based image retrieval,hwinjcto combine
multiple viewpoints of the visual content. This can be doneseveral ways,
such as vector combination for Bow model or kernel fusion fgiMSmethod.
However, these approaches lack the capacities of integrefficiently the spatial
information, which is crucial to represent the image cofjtamong the visual
concepts. On the contrary, with our general visual grapmémwsork, one can
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integrate smoothly different types of visual concept arsib dhe spatial relation
among them.

One limitation of this approach is that the relation betweamcepts is defined
manually and varies depending on the nature of the imageatimh or application
used. For this reason, two graph instances have been shathindifferent
configuration that adapted to the visual content. Once agf@salso proves the
flexibility and the expendability of our visual graph model.

Section5.3 showed how the document graphs are matched against the query
graph using the extension of the language modeling framlewdndeed, the
matching model not only takes into account a set of conceptalbo a multiple
concept sets and a multiple relation sets. We have madeasdwgrotheses in
order to adapt to the specific context of the image. The snrggptbchnique is also
modified to fit into our visual graph framework. Finally, wevkalemonstrated an
example of graph matching to illustrate the idea.

The next chapter is dedicated to the application of our ppedaapproach.
We will present two applications of the image categorizatmoblem. The
first application is a system for scene recognition of theg&gore’s famous
landmarks. Different graph models will be created to take atcount of different
visual features. We will also show how the spatial relati@me improving
the accuracy of the recognition process. We also discusshemspect of
optimizing the smoothing parameters using the cross-aadid technique. The
second application is a self-localizing system of a mobdbot in an indoor
environment. We will show how the graph model has been ale@tedapt to
different environment conditions (such as light changiolgject moving, etc.).
Finally, in both applications we will show that visual graptodels are actually
performing better than the state-of-the-art SVM methods.
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Chapter 6

Scene Recognition

Imagination is more important than knowledge ...
Albert Einstein

6.1 Introduction

The first application of the theoretical approach iscaridoor scene recog-
nition system This work has been done in the context of French-Singaporea
collaboration. This has been partly realized at the Imagedpgion and Access
lab (IPAL) in Singapore and at the Multimedia Modeling Infaation Retrieval
(MRIM) team in Grenoble. Part of the project was funded by therlidn
programme, supported by the French embassy in Singapore.

.ﬁe Snap2rell .ﬁ» Snap2Tell

Snap2Tell (TM) y QueryBy Camera
Ver 16.4 Image
fopitightizs = , | Query By File

Image
. | Saved Results
>

gl Communication Status: | P i

[ Sending Query

Image-based Tourist snap2tell | e Tcalale
. service lion, half fish statue that

Scene Information Access rovier 1 Aot 0pfiots i
(a) prototype (b) phone interface

Figure 6.1: Snap2Tell application is a prototype of an imbhgsed mobile tour
guide Lim et al.2007.

79
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One application of this scene recognition systems is forilaaoburistic scene
identification, called Snap2TelL{m et al. 2007, developed by IPAL lab. A user
uploads an image taken with a hand-phone and sends it asyatqtiee Snap2Tell
system. The Snap2Tell system will be able to identify theipalar scene and
sends back the tourist information. The Snap2Tell pro®tigimplemented
as 2-tier architecture: client-server protocol. The dlipnovides a mobile
user interface and has functionalities to capture imagesiateract with the
server. The client-server protocol is developed for comgation over wireless
connection (such as WiFi and GPRS) as depicted in fi§uke

On the server-side, the recognition system identifies th@ucad scene,
retrieves and sends back the scene descriptions. The infispscollection
are matched against the user query. Finally, informatidated to the matched
scenes (i.e. text or audio) will be sent back to the user raadbibugh the wireless
connections.

In this regard, our works concentrate on develo@rgpod scene recognition
enginewhich needs to address the following challeging issues:

e No prior knowledge of the image content and of the categtiomaof
objects/scenes;

Difficulty to separate foreground and background;

Occlusion and moving objects, for example: people, vehjdlees, etc.;

Variation of viewpoint, scale, lighting condition;

Fast and reliable response to the user query given a limibeapating
resources.

6.1.1 Objectives

Our first objective is to build for this specific image coliect an adequate
visual graph model that compromises both visual featuresspatial relations.
We will show that with the integration of spatial relationyrovisual graph model
obtains a better performance versus the standard contepidel. Moreover, we
will compare the proposed model with the state-of-the-aiSmethod on the
image classification.

Second, as user can take one or several images of the sareascuery the
system, we have considered several usage scenarios fongrand query: with
single image (I) or with multiple images (S). Therefore, sacond objective is to
demonstrate that with multiple image queries, which acdated viewpoints of
the scene, will help to improve significantly the recogmteccuracy. Tablé.1
summarizes the different scenarios implemented in ourrexpats.
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Figure 6.2: Different viewpoints of the Merlion statue. Usan use single image
or multiple images as a query.

Table 6.1: Summary of experiments on STOIC-101 collection.sc&ne (S)
corresponds to a group of images and (I) corresponds to Eegjogry image.

Training by (I) Training by (S)

Query by (1) V Vv
Query by (S) V Vv

Last but not least, we will discuss on how we optimize the dimog
parameters with 3-fold cross validation on the training sébmparing to the
posteriorioptimized methods, we will show that the effect of the crasgiation
parameters is not significant. Issues related to techmgalementation will also
be discussed.

6.1.2 Outline

In the next section, we will describe the STOIC-101 imageemtibn used
in our experiments. Then, we present the proposed visuphgreodels adapted
for the image collection in sectio®i3. The experimental result will be shown in
section6.4 with different impacts of the relation and multiple imageeges on
the classification performance. In sect@b, we will discuss on how we used the
cross validation technique on training set to optimize teathing parameters.
Finally, we summarize the chapter in sectth6
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Location 14 : Esplanade e —
SINGAPORE %:an- “Indian National Monument” [
I—I Category: monument

Scene “Supreme Court”
Category: building

—23
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Location 11: Chinatown
Scene “Chinatown Point” Scene “Thian Hock Keng Temple”
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gory:

Figure 6.3: Images of STOIC-101 collection are taken fronfed#nt locations
across Singaporé.jm et al. 2007.

6.2 The STOIC-101 collection

The Singapore Tourist Object Identification Collection (3TPhas been
collected for the experimental purpose of the Snap2Telliegggpon. STOIC
collection contains of 3,849 images taken from 101 popuwarist landmarks
in Singapore (mostly outdoor). These images were takemlynaith consumer
digital cameras in a manner typical of a casual tourist, f@wulistances and 4
angles in natural light, with a mix of occlusions and cluttrbackground to
ensure a minimum of 16 images per scene. Images in the coflext affected by
different weather patterns and different image capturtgtes. Figure6.3 shows
some example images taken from the STOIC collection. Naesbme images
in the collection have been rotated into the correct orterigfor portrait and
landscape layouts).

For experimental purposes, the STOIC-101 collection has deaded into
a training set containing 3,189 images (82.8% of the cobtlaftand a test set
containing 660 images (17.2% of the collection). The averagnber of images
per class for training is 31.7, and 6.5 for testing respettivin the test set, the
minimum number of images per class is 1, and the maximum isT2ble 6.2
summarizes some key statistics on the STOIC-101 collection.
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Table 6.2: Statistics of the STOIC-101 collection
Training  Test  Overall

Number of scenes 101 101 101
Number of images 3189 660 3849
Percentage 82.85% 17.15% 100%
Mean (per scene) 31.57 6.53 38.11
Maximum (per scene) 160 21 181
Minimum (per scene) 5 1 8

6.3 Proposed models

6.3.1 Image modeling

Several studies on the STOIC collection have shown thatrcolays a
dominant role, and should be preferred to other visual featsuch as edge
or texture Lim etal.2007. Furthermore, color histogram can be easily and
efficiently extracted. For these reasons, we rely only on H8Mr features in
our experiments. In order to assess the validity of our nalogy, we followed
different ways to divide image into regions as proposed iaptér4 and we
retained:

1. A division of medium grain, where blocks of 10x10 pixel& arsed, the
center pixel being considered as a representative for tierreWe refer to
this division asng

2. A patch division where the image is divided into 5x5 regiofhequal size.
We refer to this division agg.

For mg divisions, we used the (H, S, V) values as a feature vectoe&ch
pixel. Similarly, each patch img division is quantized by a HSV histogram
(4 bins/channel) that yields a 64 dimensional vector forhemgion. We then
clustered the HSV feature vectors of all regions ikte= 500 classes withk-
meansclustering algorithm. This results in a hard assignmentazheregion to
one concept. The set of weighted concepts;, is then obtained by counting
how many times a given concept occurs in the image. The cladite= 500 is
motivated by the fact that we want a certain granularity eiimber of concepts
used to represent an image. With too few concepts, one Iy lixeniss important
differences between images, whereas too many conceptemdito make similar
images look different.
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6.3.2 Visual graph models

We refer to the indexing obtained in this way asy-LM and gg-LM,
respectively for “divisiormgwith automatically induced concepts” and “division
ggwith automatically induced concepts”. For the methodsLMandgg-LM, we
extracted the spatial relations between concepts as meutioreviously:left of
andtop_of, and counted how many times two given concepts are relatedgh
a particular relation in order to obtain the weights for aelations. This last step
provides a complete graph representation for images. Weefdr to these two
complete methods amg-VGMandgg-VGM

left_of, 2

C1-+C1-+C1
l B

left_of, 1

Figure 6.4: A visual graph extracted withg division and two relations
left_of,top_of from ariverside scene.

Figure6.4 shows an example of visual graph extracted wighconcepts and
theleft_of,top_of relations. To summarize, we have constructed four models
based on the visual concept sets and the relation sets:

1. mg-LM=< WC,,,, 0 >, that used onlyngdivision concepts.

2. mg-VGM=< WO, Wgiesiof UW Eiopop >, that usedmg division
concepts and two intra-relation sétét of andtop_of.

3. gg-LM=< W (,,, 0 >, that used onlygg concepts.

4. 99-VGM=< WCyy, W Ejcri0f UW Eyopop >, that usedyg concepts and
two intra-relation seteft of andtop_of.
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6.4 Experimental results

To classify query images in the 101 scenes, we used the lgaguadel for
visual graphs as mentioned in equat®®. When there is no relation, as in the
cases ofng-LMandgg-LM, the termP (S}, | S, GY) = 1 so that only concepts
are taken into account to compare images.

6.4.1 Classification accuracy

The performance of the different methods was evaluatedyubie accuracy,
per imageand per scene They are defined as the ratio of correctly classified
images or scenes. More precisely:

7 s

Image accuracy- , Scene accuracy

7 S

whereT P, andT P, represent the number of images and the number of scenes
(respectively) correctly classifiedV; is the total number of test images (i.e., 660
images), andV, the total number of scenes (i.e., 101 locations).

6.4.2 The impact of multiple training/query images

Table 6.3 shows the results we obtained when using automaticallycedu
(through clustering) concepts. As one can see, automigticaluced concepts
with a medium grain division of the image yields the best tssthe difference
with the patch division for the S-I scenario being margina@Qverall, themg
division outperforms theg division in most of the cases. Especially in the S-

S scenario, theng models obtained the best performance. One possible reason
is that inmg division the number of concepts is far more than the one irgthe
division.

Table 6.3: Impact of spatial relations and multiple tragiquery images on the
performance (best result for each scenario is in bold,ivelatprovement over
the method without relations is in parentheses)

Training Query mg-LM mg-VGM gg-LM 0g-VGM
I 0.789 0.794(+0.6%) 0.484 0.551 (+13.8%)
0.822 1.00(+21.6%) 0.465 0.762 (+63.8%)

|
| S

S I 0529 0.594(+12.3%) 0.4780.603(+26.1%)
S S 1.00 1.00 0.891  0.920 (+3.2%)
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This being said, there is a difference between the I-S ands&harios:
The system is queried with more information in the I-S scentran in the S-
| scenario. This difference results in a performance whghar all methods,
worse for the S-I scenario than for the other ones. We camedchat this is why
the results obtained for theg-VGMmethod on S-1 are not as good as the ones
for I-I. There seems to be a plateau for this scenario arousidaChypothesis we
want to explore in future work.

6.4.3 The impact of the relations

We also assessed the usefulness of spatial relationshig®roparing the
results obtained with the different methods that includenot such relations.
These results are displayed in Taléle8. As one can note, except for the S-S
scenario with themg division, the use of spatial relations always improves the
accuracy of the classifier. This justifies the framework weettgoed in sectiob.3
of language model for visual graphs including automatyoalluced concepts and
spatial relations among them.

6.4.4 Comparing to the SVM method

In order to confirm the validity of our methods, we have corepathe
results with the state-of-the-art method in image categtion such as SVM
classification method (implemented thanks to lthevm'). We applied the same
visual features used for graph model in our experiment. Mmpativector in SVM
classifier is the early fusion of the multiple bag-of-wordaets. Then, each image
class was trained with a corresponding SVM classifier usaalgat basis function
(RBF) kernel. To optimize the kernel parameters, we trained1SNassifiers
with 3-fold cross validation on the training set. Finallyese classifiers are used
to classify the new query image.

Similar to above, we refer to the model with only the conttidw of concept
as LM and model with the spatial relation as VGM. We choosentigeoncepts
as a comparison model.

Table 6.4: Results on categorizing STOIC-101 collections gamng to SVM
method using I-1 scenario.
#class SVM LM VGM
STOIC 101 0.744 0.789 (+ 6.0%)0.794(+ 6.3%)

Ihttp://www.csie.ntu.edu.tw/cjlin/libsvm/
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Table 6.4 summarizes the results obtained from collection STOIC-1@h w
three methods: SVM, LM, and VGM. We can see that in all casesvGM
outperforms other methods. More precisely, with the irdégn of spatial relation
into VGM helps improving the accuracy of classical apprascbf LM by 6.0%.
Moreover, VGM increases roughly the accuracies of 6.3% @img to SVM
method. This proves that the proposed methods (LM and VGBIansistently
performing better than the state-of-the-art SVM.

6.5 Discussion

In this section, we will give some discussion on how we optia posteriori
the smoothing parameter based on the test set. We also ezdptbg cross
validation technique on the training set to optimaepriori these parameters.
We will show that the difference in term of parameter valued alassification
accuracy is not significant among the two methods.

6.5.1 Smoothing parameter optimization

The results presented above are optimiagubsteriori i.e., we exhaustively
tested the parameters on the test set to get the best conbguraVe vary the
value of each parameter in betwe@n1.0] with the increment of 0.1 for each
step. Then, we test these values against the test set anslecti@oconfiguration
which gives the best results. However, this approach otiarates the proposed
algorithms, by giving an upper bound of the evaluation rssahd not a correct
estimation.

In a way to estimate more precisely the results, we optimihedsmoothing
parameters on a validation set for timg division models because this approach
gives the best results. To achieve this optimization, al@-twoss validation
was performed. Once the parameters were optimized for eatheothree
training/validation sets, we processed the test set usiagMhole training set.
This technique is called optimiziregpriori of the smoothing parameters.

Table 6.5 compare the two techniques mentioned above for parameter op
mization. For the modeing-LM, only the concept smoothing parameterhas
been tested. We can see that there are only two cases thatithezed parameters
are different, e.g., for the I-I and I-S scenarios. Howetleg, gap between the
posterioriand thea priori is not significant (with the difference of 0.1).

Similar with the modeimg-VGM two parameters,. and ), have been tested.
Note that we applied specifically the same parameter vajder both relation
left_ of andtop_of as they contribute an equal role in the graph model. We observ
that it obtained almost the same values in all cases, exoettei case of I-S
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Table 6.5: Comparison of the smoothing parameters obtaipeddss validation
set @ priori) and by test seta posterior) with modelmg-LM and modelmg-
VGM. Bold values signify the different cases of the two methods.

Training Query Ae Al
a posteriori a priori a posteriori a priori
mg-LM
I I 0.1 0.2 - -
I S 0.8 0.7 - -
S I 0.1 0.1 - -
S S 0.2 0.2 - -
mg-VGM
I I 0.2 0.2 0.3 0.3
I S 0.7 0.7 0.9 1.0
S I 0.1 0.1 0.7 0.7
S S 0.2 0.2 1.0 1.0

scenario with the relation smoothing parametefThis proves that the smoothing
parameters obtained with tleeposteriorioptimization technique are consistent
compared to tha priori optimization technique.

Table 6.6 shows the average (Avg) and standard deviation (Std-detheo8
results obtained. The last column of the table exhibits tifferénce (Diff) in
percentage for the evaluation measurement between thiel 3efsults and tha
posteriorioptimization. As shown in the table, the results obtainedhaycross
validation and by a posteriori optimization are very simil# we focus on the
results of the I-I, S-I and S-S configurations, the diffeenare smaller than
1%, and for the configuration I-S the 3-fold results are 4.46%er. So, the
optimization used on the validation sets provides satigfyesults for a medium
grain and for automatically defined visual concepts.

Table 6.6: Comparison of the resuftgy-LM-valon 3-fold cross validation, and
percentage of difference in accuracy compared toatip®steriori optimization
modelmg-LM

Training Query mg-LM mg-LM-val Diff
Avg Std-dev

I 0.789 0.784 5.8 x 1073 -0.68%

S 0.822 0.785 58 x 107 -4.46%

I

S

0.529 0.529 0.0 0%
1.00 0.990 1.7 x 107* -0.01%

I
I
S
S
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We also tested 3-fold cross validation with relationships, presented in
Table6.7. Here again the results with the cross validations are viesedo the
a posteriorioptimized results: the S-I and S-S results are almost equamall
difference is observed as in the case of I-l and I-S.

Table 6.7: Comparison of the resuttgy-VGM-valon 3-fold cross validation, and
percentage of difference in accuracy compared toatip®steriori optimization
modelmg-VGM

Training Query mg-VGM mg-VGM-val Diff
Avg Std-dev

I 0.794 0.788 6.4 x 107% -2.64%

S 1.00 0.939 53 x 1072 -6.07%

I 0.594  0.594 0.0 0%

S 1.00 0.990 1.7 x 1072 -0.01%

nwun— -

Another conclusion drawn from Tableg6 and 6.7 is that, with a cross
validation procedure, the usage of relationships stillpetforms the results
without relationships: +0.5% for the case I-I, +19.6% fdB,land +12.3% for
S-1. For the case S-S no improvement is achieved, which ssa@asistent with
thea posteriorioptimized results.

6.5.2 Implementation

The system is implemented in C/C++ with the LTI-Biland compiled on
a Linux platform. LTI-lib is a well designed and well docunted for image
processing library, developed by the Aachen University e€hihology. Image
indexing and querying are performed on a computer with 3.z @diad-core
CPU and 8.0 Gb of memory. Training step takes about 2 hourshiomihole
training images set from extracting visual features, elusy the concepts and
modeling trained graphs. For the query step, it takes ah@at€econd on average
(or 5 images/second) for computing the likelihood of grapierg with all the
graphs stored in database. However, the computation is/ipghallelizable given
graph models are stored and are processed independestigpws that the graph
matching step is very reliable for image matching compatinglassical graph
matching algorithm.

2http://ltilib.sourceforge.net/
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6.6 Summary

We have shown in this chapter the first application of thealiguaph model,
namely theoutdoor scene recognitionThe context in which this work has been
realized is to develop a scene recognition engine for theo&redl prototype,
an image-based mobile tourist guide. For this purpose, we hested our
proposed graph models on the STOIC collection containiriaffamous scenes
of Singapore.

We have proposed different visual graph models in order @pato the
specific visual contents of the image collection. The prepographs were
constructed based on tlemlor conceptsand two spatial relationteft of and
top.of. The results obtained shown that the integration of spatiations into
the visual graph model outperformed the standard languagiehand the SVM
classification which based only on the visual concept. A kiegngith of the
proposed approach is the possibility of combining severalges for training
and for querying. The results have shown clearly an impre@mnn term of
accuracy of the multiple image queries comparing to thathef gingle image
qguery. This also confirmed thiexibility and extenbility of this new graph-
theoretic framework.

Finally, we have discussed the process of optimizing theothiag parameter
with the cross validation technique. Parallel to #&hgosteriorioptimizing method
based on the test set, it has shown a very small differencesultrwith the
parameter optimized witleross validation technique This fact confirmed the
consistency of the proposéelinek-Mercer smoothinmethod. In fact, we also
wish to study the cross validating with other smoothing rodt{such a®irichlet
smoothing as referred in the state-of-the-art. This should be ce@mediin our
future works. Some details on the implementing of the systawe also provided
to prove theeliability of the graph-based framework.

In the next chapter, we will present the second applicatibour method
to the self-localizing of a mobile robot in an indoor envinoent. Coping with
the specific condition of thendoor and laboratory environmentve experiment
another instance of the proposed graph model. We will shawitwan be adapted
to the indoor changes (such as lighting condition, objeactingy human involving
and theunknowrroom).



Chapter 7

Robot Localization

7.1 Introduction

RobotVisiort track is organized by the ImageCLEEvaluation campagin.
The main task is to exploit the location information withik@own environment
of a mobile robot based only on the visual informatidwu¢ et al. 200§. This
chapter focuses on applying the proposed visual graph nmgdelr the RobotVi-
sion track of the ImageCLEF 2009. This works was partly funolethe AVEIR®
(Automatic annotation and Visual concept Extraction foaja Retrieval) project,
supported by I’Agence Nationale de la Recherche (ANR).

The challenge was to build a system able to answer the qne$tibere are
you?” for a mobile robot. The visual system has to determireetopological
localization of a mobile robot based on a sequence of trgimmage. One
difficulty of this task is that the robot has to recognize amom different
illumination conditions and adapt as the environment ceanguch as moving
people or objects, new furniture added over the time, efthis might pose a
problem for a visual recognition system as the trained dateally obtained at
a fixed time. Meanwhile, the system has to provide the lonatiothe robot in
real-time and in different time spans (6 months to 20 mon($es} figurer.1).

Several classical approaches in computer vision have begoged for this
problem. In Pronobiset al.200g, the authors suggested an appearance-based
method using Support Vector Machine (SVM) to cope with illoation and pose
changes. This method achieved a satisfactory performahes wonsidering a
short time interval between training and testing phrasésepossible approach
is to detect the interest point (such as SIFT, Harris-Laplatc.) and do a

http:/iwww.imageclef.org/2009/robot
2http://www.imageclef.org/
Shttp://aveir.lip6.fr/
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Figure 7.1: Example images from RobotVision’09 collectida) training set in
night condition, (b) validation set in sunny condition, ¢est set in unknown
condition, (d) the local area map.

topological matching of these pointkdwe 1999. This is a simple approach
but quite effective for recognizing some types of non rigijeats (e.g., building,
car, motorbike, etc.). However, this method is heavily dase the quality of the
interest points detected.

In the context of the RobotVision, we have developed an indecognition
system that deals with some specific conditions:

Small number of images in training set;

Occlusion and moving objects, for example: people, fureitobject, etc;

Lighting conditions changes, such as sunny, night and glolag;

Different time span of image collections;

Unknownenvironmentsunknownobjects/classes.
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7.1.1 Objectives

To participate in this competition, we apply our visual laage model (VLM)
with the enhancement to cope with specific conditions oftds&. We will show
therobustnessnd theadaptabilityof the proposed models with different kind of
image representations as well as different type of visustufes. The validating
process helps us to choose the appropriate features forlddr Vhe relevance
status value (RSV) proposed in sectibr will be also employed for ranking
the results. In order to enhance the classification qualieywill perform some
post-processing of the ranked results based on their redevaalues. We will
also provide the official results of our runs submitted to limageCLEF 2009
campaign.

The visual graph model (VGM) with the addition of spatialatgn to
the VLM was done after the competition. However, VGMs havewah a
clear improvement comparing to the VLMs. We will show tha¢ impact on
different room accuracies provethability of the VGM. Finally, we compare both
approaches (VLM and VGM) with the SVM method for image clasation.

7.1.2 Outline

Next section describes the IDOL2 image collection used irtHe RobotVi-
sion experiments. Then, we present the proposed visuahgrequlels adapted
for this image collection in section.3. The experimental results will be shown
in section7.4 with different impacts of the relation and of the room clésation
accuracies. We also give a comparison of the proposed mattelthe SVM
method. Sectiorvy.5 discusses how we used the validation set to choose the
appropriate features for representing the image contefnt® post-processing
step and the official results of the run submitted will alsode¢ailed. Finally,
we conclude this chapter in secti@rb.

7.2 The IDOL2 collection

The RobotVision collection consists of a subset of the IDObfatlast The
image sequences in the IDOL2 database were captured with anC&nd-C4
perspective camera with the resolution of 320x240 pixelsyumed on a mobile
robot platform. The robot was manually driven through roevhde continuously
acquiring images (see figuie2). The acquisition was performed in a five room
of a laboratory environment and om@knownroom for test set. These rooms
was captured under three different illumination condigiom cloudyweather, in

“http://cogvis.nada.kth.se/IDOL2/
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sunnyweather, and atight Each of the rooms represented a different functional
area, annotated as follows:

e CR - corridor

PA - printer area

KT - kitchen

BO - one person office

EO - two persons office

UK - unknownroom from test set

IR

m
)
—
Racrms:
(I O-p offic
2 T-p offic
3 Kirehen
.- (@ Corridor
-~ f’ [] (Er Printer
Q Q

Figure 7.2: Path of the robot doing acquisition of one of thage sequences

The acquisition process was conducted in two phases. mgaarid validation
sequences were acquired for each type of illumination ¢mmdi over the time
span of 6 months. Therefore, the sequences captured Vdyiaitroduced not
only by illumination but also natural activities in the eronment (e.g., moving
people, furniture relocated etc.). The test sequences aceired in the same
environment but performed 20 months after the acquisitfdheotraining set. Test
sequences contain an additional room that was not captardteitraining and
validation sets. Examples of images showing the interibtiserooms, variations
of activities and changing of illumination condition areepented in Figuré&.3.
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Clondy Sunny

Two-persons office

Corridor

(a) Variations introduced by illumination

Corridor One-person office Two-persons office
" . -

(b) Variations observed over time

Figure 7.3: Example images from IDOL2 collection: (a) vaaa of illumination
changing, (b) variation over time span.

For experimental purpose, the RobotVision collection cstsof three image
sets: training set, validation set and test set. Trainingsetains a sequence of
1,034 images and validation set contains a sequence of %$esn Training and
validation sets consist of five rooms across a span of 6 moithe official test
was released as a sequence of 1,690 images with an addrbonaklnd recorded
20 months later.

7.3 Proposed models

The system we used for the RobotVision competition was cosgo$ two
processes: a recognition step and a post-processing stepevidr, we describe
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and evaluate here only the recognition step, in such a wagsesa the impact of
the proposed model. The post-processing step of the resililtse discussed in

the section7.5.2 The robot was trained with a sequence of images taken in the
night condition. Then, we used a validation set capturedunmg condition to
estimate the system parameters.

7.3.1 Image modeling

As described in chaptet, the concept sets and relation sets were extracted
from the image collection as follows:

1. Each image was divided into 5x5 patches. We extracteddcn @atch a
HSV color histogram and an edge histogram as in secti@n Then, the
visual vocabulary of 500 visual concepts was constructeasiyg k-means
clustering algorithm. From this vocabulary, we built theigited concept
setW Cpatch-

2. Similar to the previous step except that the visual festuvere extracted
from the local keypoints. To be more precise, we detecteld sceariant
keypoints using SIFT detectdrgwe 2004 for each images. Local features
were then used to create the weighted conceptiey; ;.

3. Using the two previous features we defined an inter-mrlagiet{inside}
between patch concepts and SIFT concepts, denotédl &S, if one
key-point is locatednside the area of a corresponding patch.

7.3.2 Visual graph models

Similar to above, we referred to the model without relatier. &1 (simply the
production of probability generated by different concegtssand the graph model
with the spatial relation as VGM (with the contributing ofaton probability to
graph model). Based on this definition, we have implementeedrakbgraphs to
measure the performance of our proposed model:

1. LM? =< WCpuen, 0 >, that used only patch concepts.
2. LM% =< Wy, 0 >, that used only SIFT feature concepts.

3. LMSP =< WCliz | W Cparen, § >, that used both patch and SIFT feature
concepts.

4. VGMS7P =< WCsipt \UW Chaten, W Einside >, that used patch concepts,
SIFT feature concepts and theside relations between them.
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Figure 7.4: Graph model constructed for RobotVision inciuti¢o type of image
representation and one type of relation.

Figure7.4 gives an example of the graph extracted from the conceptseis
relation sets defined above. In fact, the first three models estimated following
the equation presented in sectibr8.2 The fourth model is the fusion graph
combined with spatial relation. Its probability was congaliaccording to the
equation defined in sectidn3.3

7.4 Experimental results

7.4.1 Evaluation methods

The image sequences used in the competition were annotatiedyround
truth. The annotations of the training and validation segee were available to
the participants, while the ground truth for the test segaevas released after the
results were announced. Each image in the sequences wésdlaoeording to
the position of the robot during acquisition as belongingrte of the rooms used
for training or as an unknown room. The ground truth was thesduo calculate
a score indicating the performance of an algorithm on thesesguence. We have
applied two methods for the evaluating of the system perémoe.

Room accuracyIn order to compare our method with other classical ap-
proaches and for the validation purpose, we also adopt theiaion based on
the classification accuracy as proposed for STOIC colladsection6.4.1). This
measurement is computed as follows:

room

Room accuracy=

room

wherel P,,.., represents the number of images correctly classified fakeific
room. N,... IS the total number of images annotated for this room (i.e341
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images for corridor CR) in the test collection.

Recognition score (official measurement)

The recognition score measured the differences betweeactii@l room id
and the one classified by the systems. The following rulesewsed when
calculating the official score for a test sequence:

e +1.0 pointsfor each correctly classified image
¢ -0.5 pointsfor each misclassified image
¢ 0 pointsfor unclassified image (the algorithm refrained from theisien)

This score is more strict in the sense that the robot will getatty point (-0.5

point) for an uncorrected guest. Each participant has taddebeir strategy to
adapt to this specific context. Similar to the room accurhigher score means
higher accuracy.

7.4.2 Impact of the spatial relation

Table 7.1 describes the results in terms of score value for each mo&el.
expected, the two basic models\/” and LM?® gave a good score for the
validation set. However, the model/” did not perform well on the test set due
to the introduction of new room and new arrangement of iatefrniture. The
simple fusion modelL M/ %" underperformed the best resultsiaf/” and LM*®.
However, this result was more robust in the sense that itdges on the spurious
effects of each visual feature (i.e.,M/°" outperformed the averaged result of
LM? and LM? in both cases). Moreover, the introductioniafide relations
to the completed grapW G5~ boosted its results respectively by 39.5% and
40.1% comparing to the fusion gragh\/°-* for both validation set and test set.
This fact confirmed that the integration of relations playesignificant role to
improve the results. In addition, it showed that the linknztn object details and
its global presentation provides a better abstractionnfiage content.

Table 7.1: Recognition scores of different graph models

Graph model LM?P LM° LMSF VGM>=F

Validation 345 285 334.5 466.5(+39.5%)
Test 80.5 263 209.5 293.5(+40.1%)
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7.4.3 Impact on room classification

We present in detail the classification accuracies for etatsrepresented
by its room id) as categorized by our algorithms in Tabl2 For each class, the
accuracy is computed by the number of correctly labeled esafivided by the
total number of images belonging to this class. Note that mlg oconsider the
classification accuracies of 5 rooms as we did not treatittkownroom in the
test sequence at this step. The post-processing step a@dhkesrwill be discussed
in the sectiorv.5.2

Generally, the graph model for SIFT conceptd/® performs better than the
graph model for patch concepts\/”. This leads us to conclude that the details
of object are important clues for scene recognition. In &aldi the simple fusion
model LM tried to leverage the effect on both moded® and LM* and
improved the results only in the case of two-person office)(ED four models
gave good accuracies for the corridor (CR) regardless of lbchtnges in light
conditions. We also noted that the number of training imdgesorridor (CR)
was the highest (483/1034 images) comparing to other daisiggests that the
higher the number of image samples, the more robust therpaafae is.

Table 7.2: Classification accuracies of graph models for eaaim. Bold values
indicate the best results obtained for each class.

BO CR EO KT PA  Mean

Validation set
LMY 0.257 0.779 0.524 0.450 0.434 0.489
LM?® 0.354 0.658 0.581 0.426 0.402 0.484
LM>F 0.398 0.679 0.613 0.519 0.426 0.527
VGMS=P 0.416 0.829 0.702 0.550 0.492 0.598

Test set
LMT 0.163 0.701 0.385 0.236 0.279 0.353
LM?® 0.331 0.721 0.478 0.5090.348 0.477

LM>F 0.206 0.756 0.484 0.410 0.286 0.428
VGMS~T 0.369 0.736 0.540 0.516 0.344 0.501

As a whole, the visual graph with spatial relatiori&/ M/°~" led to higher
accuracies in all cases except in the cases of corridor (CRpmigr area (PA)
in test set. However, the difference was not significant caming to other models
(only 2% less than thé M/°-¥ graph model). Furthermore, the mean accuracy of
model VG M*>~F achieved on the test set and the validation set were the best o
four models, with more than 7% better than the simple fusiadeh) G M.
This result confirms again the strength of spatial relatigrssthat contributed to
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our graph model.

7.4.4 Comparing to SVM method

Similar to above, we refer to the model with only the conttidw of concept
as LM and model with the spatial relation as VGM. For RobotMiscollection,
we choose the modélA/*-* as LM andV G M*°~ as VGM.

Table 7.3: Results on categorizing with different methods

#class SVM LM VGM
Validation 5 0.535 0.579 (+ 8.2%)0.675(+ 26.2%)
Test 6 0.439 0.416 (—5.2%)0.449(+ 22.8%)

Table 7.3 summarizes the results obtained from collection Robot¥iSi@.
We can see that in all cases our VGMs outperform other metiMdee precisely,
with the integration of spatial relation into VGM helps toprove the accuracy of
classical LM approaches by more than 8%. The LMs performmtyugimilar to
the SVMs. Likewise, VGMs increase sharply the accurac@®22.8% to 26.2%
comparing to those of SVMs for both the test and validatiois sespectively.
Once again, this fact confirms that if we can integrate thetice in a smart way,
it could increase the overall performance of the recogmisigstems.

7.5 Discussion

In this section, we will discuss on how we choose the visuatuies for
generating the language model based on the validationwiktdifferent weather
conditions. Then we will describe the post processing stepehhancing the
guality of the results. Finally, we report the result of oubsiissions to the official
evaluation ImageCLEF campaign.

7.5.1 Validation process

The validation aims at evaluating robustness of the algmst to visual
variations that occur over time due to the changing conastend human activity.
We trained our system with the night condition set and teagginst all the other
conditions from validation set. Our objective is to undenst the behavior of
our system with the changing conditions and with differeyes of features.
Moreover, the validation process can help us to fine-tunentbdel parameters
that the latter will be used for the official test.
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We built 3 different language models corresponding with 3ety of visual
features. The training set usedright set. Model Mc and Me correspond to
color histogram and edge histogram extracted from imagk thi¢ division of
5x5 patches. Model Ms corresponds to SIFT color featureaetad from interest
points. We measure the precision of system using the agctate Summary of
the results is reported in Tabfe4.

Table 7.4: Results obtained on different conditions withstial language models

Training Validation HSV(Mc) Edge(Me) SIFT color(Ms)
Night Night 84.24%  59.45% 79.20%
Night Cloudy 39.33% 58.62% 60.60%
Night Sunny 29.04% 52.37% 54.78%

We noticed that, under the same condition (e.g. night-iigheé HSV color
histogram Mc outperformed all the other models. Howeverdenndifferent
conditions, the result of this model dropped significanthpri 84% to 29%).
It showed that the color information is very sensitive witie tchanging of
illumination condition. On the other hand, the edge mode¢)Mnd the SIFT
color model (Ms) are practically robust with the changingtleé illumination
condition. In the worst condition (night-sunny), we stilbtained a quite good
recognition rate of 52% for Me and 55% for Ms. As the resulgedtistogram
and SIFT feature are chosen as the appropriate featuregrfor@gnition system.

7.5.2 Post-processing of the results

For the official evaluation, the algorithm must be able tovte information
about the location of the robot separately for each test @x@gligatory task)
(e.g. when only some of the images from the test sequenceavaikble).
This corresponds to the problem of global topological lzedion. However,
results can also be reported for the case when the algorgtathowed to exploit
continuity of the sequences and rely on the test images @uhliefore the
classified imagedptional task). The reported results will be compared separately
for each task.

We have performed some fine-tuning steps of these resultgl@m tbo enhance
the accuracy of our system. Figufés shows the flowchart of the post-processing
of the results come from different models. This flowchariudes four main
functions:

1. Linear fusion: we take the advantage of the different features extracted
from the images. We represent an image by a set of conceptCsets
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Figure 7.5: Post-processing steps of the results. Blue seleefar the obligatory
track and red scheme is the for optional track

and eaclC; corresponds to a visual feature. Assuming the concepts sets
independence, we fuse the relevance status values (RSV)tifi@manked
list of the individual concepts sets using sum operator:

RSV(Q,D) =) RSV(g;,d;) (7.1)

where@ = {¢;} andD = {d;} are the set of concept sets corresponding
to the query image and to the document image respectivelyis Jtep
corresponds to the visual graph fusion with the absent ofre¢tetion as
developed in the above section.

. Regrouping by room id: On the basis that using only the closest image
to determine the room id of a query image is not enough, weqseqh to
group the results of the n-best images for each room. We ctavganked
list of room RL instead of an image list:

RL = {R,RSV(Q,R)} (7.2)
with
RSV(Q,R)= Y  RSV(Q,D) (7.3)
Fn—best(Qj,R)

where R correspond to a room anfl,_,..; is a function that select the
images with the best RSV belonging to the roén
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3. Filtering the “unknown” room : we measured a difference from the score
of the 4th room to the 1st room in the room list RL. If the diffiece is big
enough & thresholds) we keep this image. Otherwise we remove it from
the list (or consider as an "unknown” room). In our experimere choose
the value5 = 0.003 as a threshold.

4. Smoothing window. we exploited the continuity in a sequence of images
by smoothing the result in the temporal dimension. To do, that use a
smoothing window sliding on the classified image sequendésie, we
choose the width of window = 40 (i.e. 20 images before and after the
classified image). So, the score of the smoothed image is ¢ae value of
their neighborhood images.

Zje[j*w/Q;jer/Z] RSV<Qj7 R)

w

RSVwindow(Qiy R) - (74)

wherew is the width of the smoothing window. In the real case, we @oul
only use a semi smoothing window which considers the imagéx® the
current classified image. This leads to:

o A RSV(Q:, R
RS‘/semifwindow(Qia R) = ZJE[J_U)J] w (Q] ) (75)

wherew is the width of the semi-window.

Below is the result for the post-processing step (see Talebased on the
ranked lists provide by two models Me and Ms from the valolarocess. The
training and validation conditions used for post-proasgsire innightandsunny
respectively.

Table 7.5: Result of the post-processing step based on 2 mbtieind Ms

Me Ms Fusion  Regrouping Filtering Smoothing
n—best=15 [F=0.003 w=20
52.37% 54.78% 62% 67% 72% 92%

As we can see, the linear fusion of these 2 models gives dwar&@% of
improvement. The regrouping step helped to pop-up someipsstirooms from
the score list by averaging frombestroom’s scores. The filtering takes part in
eliminating some of the uncertain decisions base on therdifice of their score
after the regrouping step. Finally, the smoothing step ¢ing an optional step)
helps to increase significantly the performance of a sequehicnages by 20%.
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7.5.3 Submitted runs to the ImageCLEF 2009

Participating in this competition, we have built 3 graph misdased on the
previous validating process. We eliminated the HSV histogmodel because of
its poor performance on different lighting conditions. W&eed the same visual
vocabulary of 500 visual concepts generated for night cmrdset. Each model
provided a ranked result corresponding with the test sespisrieased. The post-
processing steps were performed similar to the validatnoggss employing the
same configuration. The visual language models built forci@petition are
listed as follows:

e Mel: visual language model based on edge histogram extractedif®x10
patches division

e Me2: visual language model based on edge histogram extracigd3k5
patches division

e Ms: visual language model based on color SIFT local features

Based on the 3 visual models constructed, we have submittadsto the
ImageCLEF evaluation:

e 01-LIG-MelMe2Ms: linear fusion of the results coming from 3 models
(Score = 328)

e 02-LIG-MelMe2Ms-RKk15: re-ranking the result of 01-LIG-MelMe2Ms
with the regrouping of top 15 scores for each room (Score 3 415

e 03-LIG-MelMe2Ms-Rk15-Fil003: if the result of the 1st and the 4th in
the ranked list is too small (i.¢8 <0.003), we remove image that from the
list. We refrain the decision from some cases other than t iieem as
unknown room (Score = 456.5)

e 04-LIG-MelMe2Ms-Rk2-Diff20: re-ranking the result of 01-LIG-Me1lMe2Ms
with the regrouping of top 2 scores for each room and usingosinig
window (20images/frame) to update the room-id from imaggusaces
(Score = 706)

e 05-LIG-MelMs-Rk2-Diff20: same as 04-LIG-MelMe2Ms-Rk2-Diff20
but with the fusion of 2 model Mel and Ms (Score = 697)

Our best run03-LIG-MelMe2Ms-Rk15-Fil003 for the obligatory track is
ranked at10" place among all the 21 runs submitted. The best run in the
competition (score = 793 points) was obtained with an apgrdesed on local
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feature matching. Rud4-LIG-MelMe2Ms-Rk2-Diff20 had not met the criteria
of the optional task which only used the sequence before ltssitied image.
Nevertheless, this run has increased by roughly 250 paimis the best obligatory
run. It means that we still have room to improve the perforoeamf our systems
with the valid smoothing window.

7.6 Summary

To summarize, we have shown in this chapter the second agiphicof the
visual graph model, namelgnobile robot self-localization Coping with the
specific condition of anndoor laboratory environmentwe have implemented
another instance of the proposed graph model. The propaseal graph models
have to adapt to the specific visual contents of the imagedodn, as well as
adapt to the environment changes (such as lighting conditidject moving,
human involving and thenknownroom).

We have constructed different graph models basgubdech conceptandSIFT
conceptsvhich represented the abstract form and the object de&s[sectively.
A patrticular relation between the two concepts is also ietlito capture the
co-occurrence information among the concepts. The resbtned shown that
the integration of spatial relations into the visual grapbdel outperformed the
standard language model and the SVM classification whicledasly on the
visual concept.

We have also performed a validation process based on théatialh sets
to choose the best visual features adapting to the environofenges. Post-
processing step of the ranked list was also studied. Finaiy provided the
official results of our submitted run to the ImageCLEF 200@for

In the next chapter, we will conclude our thesis and give sperspectives
into the future works.
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Chapter 8

Conclusions and Perspectives

We are not interested in the unusual, but in the usual seesuaily.
Beaumont Newhall

Content-Based Image Retrieval (CBIR) has been an open problehefpast
two decades. Several attempts have been made to overcomefdheation
gap between low-level visual features and the semantiosr laff image. In
[Marr 1983, Marr proposed a common paradigm for designing a visualgec
nition system which includes three sub-modulesage processingnappingand
high-level interpretationOur works aimed at solving the two latter problems.

In this thesis, we have introduced a graph-based model foesenting image
content which added an intermediate layer to image reptasen. This graph
captured the spatial relations among visual concepts a$sdcwith extracted
regions of images. The graph matching process is based oextkasion of
unigram conceptual modeling, proposed initially Mdisonnasset al.200§.
Theoretically, our model fits within the language modelimgp@ach for infor-
mation retrieval, and expands previous proposals for gkssded representation.

Even though we have chosen to illustrate the proposed apipvaieh the scene
recognition problems, this method is not fundamentallg te a specific type of
images. The designed framework can be extended for seygresd f image
representations, as well as several applications in difitefields, such asmage
retrieval/annotation object recognition video classification/categorizatipror
medical imaging classification This list, by all means, is not exhautive. As
suggested by Nicolas Maillot, the combination with a reasgrayer or an
ontology network Maillot 2005 will equippe the graph model with the capacity
of understanding the scenic contents. The system is thentalletect multiple
object instances embeded in a particular scene, e.g, agplgyduilding, street ...

109
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8.1 Summary

We summarize here some main points mentioned in this dagert

Part | introduced the current state-of-the-artin the Content-8&sage Retrieval
field.

In chapter2, we gave a survey on different methods of image processiciy su
as: image decomposition and visual features extractions i€ha basic step in
representing of the image contents. Based in the extracsedhetures, thbag-
of-wordsmodel has been introduced. The bag-of-words model ofteresepts
image content by a sparse vector of visual concepts. Imagesatched based
on the Euclidean distances or the cosine similarity of thentjged vectors. The
bag-of-words model is simple but lacks the information oa $ipatial relations
between visual concepts.

In chapter3, we reviewed two principal branches of learning methodethas
on the conceptual representatiogenerative approacheand discriminative
approaches Important approaches, such as, Naive Bayes, Language iogdel
Support Vector Machines, have also been introduced. Therdiscussed on the
need of embedding the structural information of visual epts into a graph-
based image representation. We also investigated somentgmaph matching
algorithms and their limitations. Finally, an initial progal of the graph-based
image retrieval framework was sketched.

Part Il described the proposed approach based ongtlaph-based image
representatiorand agenerative matching algorithm

In chapter4, we presented the system architecture for the graph-beassgki
modeling. This framework included three main stagesage processingyraph
modelingandgraph retrieval Theimage processing steggms at extracting the
different visual features from image regions to build a atisual vocabularies.
The graph modeling stemonsists of visual concepts construction and spatial
relation extraction. Each image is then represented by eegponding visual
graph. Finally, theyraph retrieval staggenerates the probabilities likelihood for
the query image from the trained graphs in the database.dsmag ranked based
on their relevance values.

Chapters defined formally the visual graph model based on a set of gince
sets and a set of relation sets. Two instances of the visaghgmodels were
used to illustrate the adaptability of the latter to the gagblications. Then, we
showed how the document graphs are matched against the gragty using the
extension of the language modeling framework. For bettdetstanding, we have
demonstrated with an intuitive example of graph matchingalfy, we showed
how visual graphs were actually ranked in the log-probghbslpace.



8.2. Contributions 111

Part 11l demonstrated the proposed approaclPamt [ with two applications:
scene recognitiorand robot localization These experimentations aimed at
assessing the validity of our approach in certain aspecesh&Ve conducted the
test on two image collections: STOIC-101 and RobotVision’09.

In chapter6, the consideration of regions and associated concept&sallo
us to gain generality in the description of images, a geitgrathich may
be beneficial when the usage of the system slightly diffeosnfits training
environment. This is likely to happen with image collecgdhat, for example,
use one or several images to represent a scene. The propastr able
to adequately match images and sets of images representgdaplis. As
we conjectured, being able to abstract from a low level deson enables
robustness with respect to the usage scenarios. On the lwhdr querying a
specific location with a group of images is very promisingftdure applications
(such as mobile localization services) that allows highesueacy score with
less computational effort comparing to video sequence. didit@n, the way
of combining different image representations/featurethéngraph framework is
more versatile comparing to other fusion approaches. Omxtperimental side,
we have proved a positive impact of the relations, as wellfaaudtiple image
queries. We also discussed on the smoothing parameteripgtiom with a cross
validation technique based on the training image set.

In chapter7, we showed that integrating inter-relations between tvifeint
concept sets to represent images led to a significant imprentin the results.
We hoped that the combination of the two different image esentations (such
as patch and keypoints) can take advantage of the diffeisnaivfeatures of
both the abstract-level of the scene as well as the detaitkeobbjects. The
strength of our approach is that this fusion-like model camkpressed naturally
through the links of graph-based model. The experimenslie confirmed
the superiority of the visual graph model comparing to theceptual modeling
approach. We also showed that the graph models performtst bein the state-
of-the-art SVM method for image classification. Finallye tbroposed approach
has been validated and submitted to the ImageCLEF for the&taih.

8.2 Contributions

From the point of view of ggraph-based frameworkhe major contributions
of our approach are:

e A well-founded graph representation for image retrieval We have
presented a unified graph-based framework for image reqaga which
is able to integrate different types of visual concepts gratial relations
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among them. Such graph can represent different image pountws in a

very flexible way. Indeed, the visual graph model represamiatermediate
layer of image representation that could fill femantic gagpetween high-
level knowledge and visual concepts.

e A simple and effective graph matching process We have extended
the language model in infomation retrieval for graph matghi The
language modeling has been studied extensively for texievat and
proved its effectiveness. Standing from this well-fourssnframework,
our proposed method allowed matching of complex graph ceexbmf
multiple concept setand multiple relations sets This can be done under
certain independence hypotheses of the concept sets aattbmebets.
Furthermore, we used théelinek-Mercer smoothing methoevhich is
a popular approximation technique for re-estimating of pmebability
distribution.

e Application to the problem of image categorization We have shown how
the proposed approach can be applied to the problescaie recognition
androbot localization Different graph instances have been developed for
each application to adapt to the image contents. The expatahresults
performed on two image collections (STOIC-101 and RobotYisivave
confirmed the good performance and the effectiveness ofitualgraph
modeling. Moreover, the proposed method also outperforbwt the
standard language modeling and the state-of-the-art SVihads. The
results obtained show a promising direction for the imadgegmization.

8.3 Future works

Our objectives aim at designing a graph-based frameworlclwbains the
capable ofgenerality re-usabilityandexpendabilityin different contexts. In the
future, several aspects can be considered to extend ol gsaph model.

8.3.1 Short-term perspectives

Integration of textual information for multimedia retriev al/annotation

First of all, as the language model is coming from textual dimmwe could
combine the graph representation of image with the grapreseptation of the
annotated text as done in ImageCLEF photographic retriesakt Hence, multi-
modalities image indexing and retrieval should be a pramislirection for the
future model extension.
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In our case, the integration should be done smoothly as thayed the
same probabilistic framework. The conceptual language etimagl has been
investigated successfully invlaisonnasset al. 2009 with the use of UMLS
(Unified Medical Language System) for conceptual relatixneetion in medical
document retrieval. Therefore, we wish to fuse these twoaggihes in the same
graph-based framework in order to enhance the system pafare.

Moreover, the common framework between textual/visugblyraakes it pos-
sible to learn the mutual information for each text categonyage topic. Similar
to [Phamet al. 2007, the proposed graph can be used for image annotation with
the COREL image collection. For each image topic, we can tre@peesentative
graph for a set of visual graphs with a specific classifier (for exETMpVM
classifier). Then, this representative graph can be useddssifying of the new
images with the associating annotations.

The need of further study on visual concepts and spatial relabns

In chapter4, we have shown that the choice of visual concepts and raktio
are subjective. Hence, the future work should include mgpeg of visual
concepts and their relations and study the effect of theseegis and relations
on the accuracy. Then the selection of good visual featuustng LSA
techniques to eliminate the&ynonymipolysemyeffects on the visual concepts)
and spatial relations can be processed. This should be eatidpitowing a
specific image context or towards a typical scenario of th@iegtion. We also
wish to investigate different possible couplings of the dewel and high-level
representations, with the hope to come up with a single sepitation that could
be used in a general case.

Study the impact on the number of visual concepts

Another technical issue that we would like to address is Hweoe of number
of clusters for visual concept learning. This number midfeta the quality of the
constructed visual concepts. Actually, this parameteibleasn chosen empirically
and fixed for each application. As done PPhHam 200§ a practical study on this
aspect is needed for subsequent step of building visuahgregulels.

Evaluation of the proposed approach for object/video retrieval

Last but not least, experiment on a large collection of insageecessary to
test thescalability and thestability of the proposed method. In the near future,
the graph-based model can be used to tackle the video @dtrég@plications
(e.g., TRECVID collection). Moreover, the graph instancepased in chapter
5 (with the combination of patches and keypoints) seems g@piate for object
classification. Hence, the proposed graph could be applie¢®C challenge
task which comprises of more than 10K images in training astigets.
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8.3.2 Long-term perspectives

The long-term perspectives of this work cover a broad-rasfgéneoretical
extensions, as well as the practical aspects, for exampleegration of an
interactive relevant feedback and a prototype user-imterfor retrieval platform.

Relevance feedback modeling using information divergence

Although the query likelihood model has a number of advaggad is limited
in terms of how it models the user needs. It is difficult to inmrate information
about the relevant documents to a specific query using theerduranking
algorithm. However, it is possible to extend the currentrgtmased model to the
pseudo-relevance feedbaciodel with the measure of divergence between query
models and document models. A well-known measure frommné&ion theory is
theKullback-Liebler (KL) divergencerhich measures the difference between two
probability distributions. Hence, the first theoreticgbast we want to address is
to incorporate this measurement in our graph-based framke\Bamilarly, the KL
divergences should be computed independently for the porses distributions
and the relation set distribution respectively.

Extension of the current probabilistic framework

As explained in chapteb, the proposed approach relies mainly on the
theoretical assumption that the concept sets and relaéitthase following the
multinomial probability distribution This assumption is widely used for text
retrieval domain where the random variable takes only tlserdte values (i.e.,
0,1,2...N). The k-means clustering definesard versionof visual concept for
visual vocabulary construction. Thus, the multinomialtrifisition assumption
still holds true.

However, the visual concepts can be defined differently fitbin textual
concept, for example usirfgzzy c-meansr EM clustering[Moore 1998, which
can create aoft versionof visual concept that is likely to be closer to the
reality. It means that a visual concept might belong to sdvelusters with
different weights/probabilities. For example, a visuahoept could belong
to clustercl with a probability of 0.8 and to cluster2 with a probability of
0.2. In this case, the multinomial probability distributics no longer valid and
Dirichlet distribution seems more suitable for modeling of the random variable.
As a consequence, the concept independence hypothesisdsrnect anymore.
Therefore, one theoretical direction is to extend the ecurimmework with the
Dirichlet probability distribution.

Graph clustering for visual concept navigation
One of the current trends in CBIR system is automatically negiray image
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into homogenous visual clusters (or sub-topics) for eachgentopic. In the
ImageCLEF 2009 photo retrieval track, relevant images wskedto be clustered
into sub-topics based on their visual similarities. Forregee, if a topic asks for
photos of animals, clusters will be formed based on aningd.tyrhe objective is
to promote the diversity of image search system. Anothem@kaisimage Swirl
system developed by Google labs (see Figdig that automatically estimates
the image clusters based on their visual appearances élyausing color and
shape information) of photos for the textual queries.

Figure 8.1: Photo clusters for the query “Eiffel tower” bdsen their visual
appearances (Google Image Swirl).

This function enables users a quicker way to browse and hzsuine result
of searched images. Therefore, we would like to addresptbidem within our
graph-based framework by performing'graph clustering” algorithm on a set
of visual graph. This can be done thanks to the pre-compunteidasgty values
between pairs of image graphs.

Towards a sketchable user interface (Ul) for graph retrievad

With the current proposal, the image search system allowssu® query
the image collection using an image (or a group of imageserdis a system
that allows user to express their ideas by drawing any shageigking colors



116 Chapter 8. Conclusions and Perspectives

from a limited selection, such as Retritgystem (see Figurg.2). One possible
direction for the graph-based framework application ig the can design an Ul
that allows user to generate their own visual graph progidirset of annotated
visual concepts from the visual vocabulary and a set oficglat Concept and
relation can be assigned with a weight/probability basedhair importance.

Finally, users can arrange these inputs to form a visualhgsapgraph and query
it against the visual graph database.

trievr
All images
Search by:
Sketch = Imane This phato is This phote is
& currenthy currenthy
unavailabke unavailable
flickr flickr
1ge 3

From cianebuy

This photo is This photo is
currenthy curremtly
unavailable unavailable
flickr flickr

From lean Sol Partre From ghnothimagen

[EF Piease help us raie skeiches
for The Art of retrievr! Only a milion
togo..

From Rossana

Figure 8.2: Retrievr's user interface allows user retriguoiotos by drawing a
simple sketch.

Finally, we believe that the work achieved in this thesis a# as the future

works will allow to create image retrieval systems wittbtter quality easier to
extendandmore interactive

http://labs.systemone.at/retrievr/
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