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Abstract

Content-based image indexing and retrieval(CBIR) system needs to consider
several types of visual features and spatial information among them (i.e., different
point of views) for better image representation. This thesis presents a novel
approach that exploits an extension of the language modeling approach from
information retrieval to the problem of graph-based image retrieval. Such versatile
graph model is needed to represent the multiple points of views of images. This
graph-based framework is composed of three main stages:

Image processing stageaims at extracting image regions from the image. It
also consists of computing the numerical feature vectors associated with image
regions.

Graph modeling stageconsists of two main steps. First, extracted image re-
gions that are visually similar will be grouped into clusters using an unsupervised
learning algorithm. Each cluster is then associated with a visual concept. The
second step generates the spatial relations between the visual concepts. Each
image is represented by a visual graph captured from a set of visual concepts
and a set of spatial relations among them.

Graph retrieval stageis to retrieve images relevant to a new image query.
Query graphs are generated following the graph modeling stage. Inspired by
the language model for text retrieval, we extend this framework for matching the
query graph with the document graphs from the database. Images are then ranked
based on the relevance values of the corresponding image graphs.

Two instances of the visual graph model have been applied to the problem of
scene recognitionandrobot localization. We performed the experiments on two
image collections: one contained 3,849 touristic images and another composed of
3,633 images captured by a mobile robot. The achieved results show that using
visual graph model outperforms the standard language modeland the Support
Vector Machine method by more than 10% in accuracy.

Keywords: Graph Theory, Image Representation, Information Retrieval,
Language Modeling, Scene Recognition, Robot Localization.
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Chapter 1

Introduction

Napoleon once declared that he preferred a drawing to a long report. Today, I
am certain he would say that he would prefer a photograph.

Brassäı

As an old saying goes,“A picture is worth a thousand words”, pictorial
information is a crucial information complementary to the textual information.
Brassäı, a photo-journalist, had captured the same importance of the visual
information for his interview forCameramagazine in 1974. Indeed, human tends
to prefer using visual information to express their ideas and their communication
needs.

In recent years, the number of image acquired is growing rapidly, thanks to
the invention of digital cameras and the creation of photo sharing sites such as
Flickr1, Picasa2, Photobucket3, etc. Digital cameras are becoming cheaper and
more friendly to the amateurs. This fact has encouraged the users to explore the
image world and generate more and more visual contents. Reported by Media
Culpa4 that Flickr, one of the best social photo sharing sites, has reached the
milestone of5 billions photos uploaded to their website in September 2010. The
increase in terms of the number of photos uploaded is very steep over the years.
Other social networking sites, such as Facebook5, has also claimed to have2.5
billion photos uploaded per month in February 2010.

As consequence, a user will need an effective system for organizing their
photos, searching for a particular photo or automatically tagging their photos with

1http://www.flickr.com
2http://www.picasa.com
3http://www.photobucket.com
4http://www.kullin.net/2010/09/flickr-5-billion-photos/
5http://www.facebook.com
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2 Chapter 1. Introduction

Figure 1.1: Example of the current state-of-the-art systems in image search. (1)
Google Images, (2) Bing Image by Microsoft, (3) Flikr photo byYahoo, (4) FIRE
visual search engine and (5) ALIPR photo tagging and image search

some keywords. This raises an important challenge for research and industry.
Eventually, Annotation-Based Image Retrieval (ABIR) is widelyused in the real-
world image search thanks to the success of the web search engine such as Google
or Bing. Figure1.1 shows some current state-of-the-art engines used for image
search. Some of the current ABIR systems are:

• Google Images Search6: As of today, Google has indexed more than 10
billion7 of images on the Web. The success of the web search engine led
Google to create an image search engine. However their search engine is
still heavily based on textual metadata related to the imagesuch as image

6http://www.google.com
7http://googleblog.blogspot.com/2010/07/ooh-ahh-google-images-presents-nicer.html
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title, description, or links. Recently, Google has added some new search
features with the image option panel. They implemented somesimple
image filters based on thecolor information(full color vs. black & white)
andpicture type(photos, drawing, etc.) andface detectionengine.

• Bing Images Search8: Similar to Google’s engine, the Microsoft search
engine mainly uses the textual information to index their photos. Images
results can be narrowed down by some options such asimage size(big,
medium, small),image layout(square, rectangle), and the integrating of
face detection technology.

• Flickr photo : In order to deal with a large amount of photos uploaded
to their website, Flickr allows users to addtags to their photos or to
organize them intogroups and setsof photos or to localize using the
geographical information(i.e., GPS coordination). However, the provided
textual information is subjective. Hence, the search results rarely satisfied
user’s needs.

Another type of image search is based principally on the analysis of the visual
image content. These systems are known as Content Based Image Retrieval
(CBIR) engines. However, we observe that there are only few CBIR systems
that have been implemented in the real-world context. Most of the systems are for
experimental research purposes. Some of these systems are:

• Flexible Image Retrieval Engine (FIRE)9: This is one of the visual search
engines that used several image features such as color, texture and shape
information for similar image searching. Moreover, the system allows user
to fine-tune their queries by using a relevant feedback mechanism (i.e.,
scoring the search result with positive or negative indication). This system
produces encouraging results, although it is far from perfect.

• Automatic Photo Tagging and Visual Image Search (ALIPR)10: This
is the first automatic image tagging engine developed by researchers at
the Penn State University. This engine will automatically analyze and
associate with some keywords to the photos (such as a “person” or “car”
or a more general “outdoors” or “manmade”) according to their visual
content. In return, these keywords are used to index the photos for searching
later. The researchers claimed that the system achieved a high accuracy
(approximately 98% of all photo analyzed). However, ALIPR system tends
to assign more general and higher frequency terms.

8http://www.bing.com/images
9http://www-i6.informatik.rwth-aachen.de/deselaers/cgi bin/fire.cgi

10http://www.alipr.com
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Even though the text retrieval field has received an enormously success, image
indexing and retrieval is still a very challenging problem and requires a lot of
research efforts. The need for a reliable image retrieval system is the research
trends for the decade. In the scope of this dissertation, we intend to add some new
perspectives to this challenging puzzle.

1.1 Motivations

CBIR is an active research domain for more than 20 years. CBIR systems
are complex retrieval platforms which combine multiple areas of expertises from
computer vision and machine learning to information retrieval (Figure 1.2).
Achievements have been made to contribute to the advancement of the domain.
However, a good CBIR system is still far from a reality.

Figure 1.2: Content Based Image Retrieval (CBIR) in the intersection of different
research fields.

On the other hand, still image representations for computerare about combin-
ing multiple points of views. A broader perspective for multimedia document
indexing and retrieval is given by R. Datta, D. Joshi, J. Li, and J. Z. Wang
in [Dattaet al.2008]: “The future lies in harnessing as many channels of
information as possible, and fusing them in smart, practical ways to solve
real problems. Principled approaches to fusion, particularly probabilistic ones,
can also help provide performance guarantees which in turn convert to quality
standards for public-domain systems”
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This reflexion also holds in the specific context of image indexing and
retrieval. The points of views of images rely on different regions extracted,
different features generated and different ways to integrate these aspects in order
to annotate or retrieve images based on their visual similarity.

Let us present a short overview of the diversity of approaches encountered
in the image indexing and retrieval domain. Image indexing and retrieval may
use predefined segmentation in blocks [Chuaet al.1997], or try to consider seg-
mentation techniques based on color/texture [Felzenszwalb & Huttenlocher 2004]
or point of interest like the well-known work of D. Lowe [Lowe 2004]. The
feature considered are mostly represented using histograms of features (colors,
textures or shapes) or ofbag-of-word (BoW) [Sivic & Zisserman 2003] or of
latent semantic analysis (LSA) [Phamet al.2007]. Other approach may consider
spatial relationships between regions [Smith & Chang 1996]. When considering
more complex representations, other approach may useconceptual graphrepre-
sentations [Ounis & Pasca 1998].

A short survey on the state-of-the-art leads us to several thinking:

• Integration of spatial relation . Most of current image representation is
based on the flat and numerical vector presentation of BoW model. The
information on the spatial relations between visual elements is not well
considered. Therefore, we believe that a complete image representation of
image contents should include in the right way this important information
together with the visual features.

• Graph-based image representation. While studying the graph theory,
we think that it should be appropriate to use this type of representation
to combine the visual contents and the relations among them.Graph has
been used as a general framework for structural infomation representa-
tion [Sowa 1984, Ballard & Brown 1982]. Considering image content as a
special source of information (i.e., visual features, spatial relations), graph
is a well-suited representation for image contents.

• Bridging the semantic gap. An important underlying issue that we would
like to address is to reduce the “semantic gap” between high-level of
knowledge representation (e.g., text description, conceptual information)
and the middle-level of image representation (e.g., BoW model, visual
concept detection). Indeed, the graph-based image representation will add
an intermediate layer to fill this gap.

• Graph matching with probabilistic framework . Classical graph match-
ing algorithm is a main bottleneck for the graph-based knowledge repre-
sentation. However, probabilistic approaches (such as Bayesian methods,
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Probabilistic Latent Semantic Analysis (pLSA), Language Modeling, etc.)
have been developed widely in the information retrieval field for the
decades. We think that it should be interesting and important to express
the graph matching process with the probabilistic matchingframework.

Therefore, the objective of this thesis aims to answer a part(if not all) of the
above mentioned questions.

1.2 Problem statements

In this dissertation, we address two specific problems, namely a graph-based
image representationand agenerative graph matching method.

1. First, we focus on a representation of image content, moreprecisely graph-
based representation, which is able to represent differentpoints of views
(namely several visual representations and spatial relationships between
regions). Despite the fact that selecting relevant regionsand extracting
good features are very difficult tasks, we believe that the way we represent
different points of views of the image (like several segmentations and/or
several features for instance) will also have a great impacton image
annotation and image retrieval.

Considering a graph that represents the visual features which are intended
to preserve the diversity of content when needed. In fact, such graphs
are versatile, because they can handle early fusion-like approaches when
considering several representations in an integrated matching process as
well as late fusion-like approaches when considering matching on specific
sub-graphs before fusion.

2. Second, we define a language model on such graphs that tackles the
problem of retrieval and classification of images. The interest of considering
language models for such graphs lies in the fact that it benefits from this
successful research field of information retrieval since the end of the 90s and
in particular the seminal work of Ponte and Croft in [Ponte & Croft 1998].
Such language models are well-defined theoretically, and also have shown
interesting experimental results, as synthesized in [Manninget al.2009].
Therefore, our main focus is to propose an extension of language models
in the context of graph-based representation for image content.

On the practical side, we will apply the above graph model in two applications
(Figure1.3): scene recognition systemandrobot self-localizing system:
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Figure 1.3: Two applications of this thesis: (a) a scene identification system for
mobile phone and (b) a self-localization system for mobile robot.

1. The first application is ascene recognition systemfor mobile phone service,
for instance the Snap2Tell system developed by the IPAL lab11. This system
enables user to take a picture of a monument with their cameraphone,
send it to Snap2Tell’s server and to receive in return touristic information
about the monument. To do so, a set of images taken from 101 Singapore
landscapes has been collected and used for experimental purposes. The
main task of the recognition system is to match a query image to one of the
101 different scenes (or 101 classes).

2. The second application is arobot self-localizing systemusing only visual
information, known as the RobotVision12 task in ImageCLEF international
benchmark and competition. The robot has to determine in real-time its
topological location based on the images acquired. The image acquisition
was performed within an indoor laboratory environment consisting of five
rooms of different functionality under various illumination conditions. The
main task of the localization system is to identify the correct rooms of the
robot in anunknowncondition and with different time spans.

1.3 Main contributions

Coping with the specific problems as stated above, the contributions of this
thesis are as follows:

• First, we present aunified graph-based framework for image represen-
tation which allows us to integrate different types of visual concepts and
different spatial relations among them. This graph can be used for different
image points of views in the very flexible way. Actually, thisvisual graph

11http://www.ipal.i2r.a-star.edu.sg
12http://www.imageclef.org/2009/robot
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model is a higher layer of image representation that approaches the image
semantics.

• Second, we extensively study theextension of language model for graph
matching which allows a more reliable matching based on a well studied
theory of information retrieval. The matching method allows matching a
complex graph composed of multiple concept sets and multiple relations
set. We also propose a smoothing method that adapts to the specific graph
model.

• Finally, the experimental results, performed on STOIC-101 and RobotVi-
sion ’09 image collections, confirm theperformance and the effective-
ness of the proposed visual graph modeling. The proposed method
outperforms the standard language modeling and the state-of-the-art SVM
methods in both cases.

The results of this work have been published in the Journal onMultimedia
Tools and Applications (2011), the proceeding of IEEE International Workshop
on Content Based Multimedia Indexing (CBMI 2010), the proceeding of ACM
Conference on Research and Development in Information Retrieval (poster
session of SIGIR 2010), the proceeding of Singaporean-French IPAL Symposium
(SinFra 2009) and the proceeding of ACM Conference on Information and
Knowledge Management (CIKM 2007).

Our participation in RobotVision track, part of ImageCLEF 2009 international
evaluation, also led to good results. The technical methodshave been reported in
a working note for the ImageCLEF 2009 workshop and a book chapter in Lecture
Notes for Computer Science (LNCS) published by Springer. A complete list of
publications can be found in the Appendix A.

1.4 Thesis outline

We describe here the structure of this thesis. This thesis has six chapters:
Chapter 2 introduces the early works on image indexing and retrieval.We

will give an overview of the image processing such as image decomposition (grid
partition, region segmentation or local keypoints), visual feature extraction (color,
edge histogram and local invariant features). A preliminary indexing models
based on the Bag-of-Word (BoW) model is also introduced. We describe how the
visual concepts are constructed from the low-level visual features and quantized
with the vector model. How latent semantic technique was used successfully with
the BoW model is also discussed. Our goal is to present in this chapter the basic
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steps in representing image contents. Based on these elementary steps, we present
in chapter 3 the different learning methods of visual concepts in the literature.

Chapter 3 concentrates on different machine learning techniques based on
the numerical representation of an image. We review two mainapproaches in
information retrieval: generative-based model and discriminative-based model.
The generative models include two main methods: Naive Bayes and Probabilistic
Latent Semantic Analysis (pLSA). The discriminative models include two main
methods: k-NN classification and the famous Support Vector Machine (SVM). We
also mention in this chapter how the structure been capturedto represent image
content with the graph-based model. One important model that our method relied
on is Language Modeling (LM) method will be detailed in this chapter.

Chapter 4 gives an overview of our proposed approach. The proposed model
includes 3 main stages:

• Image processing stageaims at extracting image regions and keypoints
from the image. It also consists of computing the numerical feature vectors
associated with image regions or keypoints.

• Graph modeling stageconsists of grouping similar visual features into
clusters using the unsupervised learning algorithm. The visual concepts
are generated for each type of visual feature. Then, the spatial relations
between the visual concepts are extracted. Finally, an image is represented
by a visual graph composed of a set of visual concepts and a setof spatial
relations.

• Graph retrieval stage is to retrieve the relevant graphs to a new image
query. Inspired by the language model, we extend this framework for
matching the query graph with the trained graph from the database. Images
are then ranked based on their probability likelihoods.

Chapter 5 details the proposed visual graph model. We formalize the
definition of visual graph model and give examples of two graph instance. The
graph matching model takes the query graph model and the document graph model
as input to rank the image based on their probability likelihood. The matching
model is an extended version of the language modeling to graphs. We also
explain how we transform the normal probability into the log-probability domain
to compute the relevance status value of image.

Chapter 6 presents the first application using the proposed approach:outdoor
scene recognition system. We will present the proposed visual graph models
adapted for the STOIC collection. The experimental result will be studied with
different impacts of the relation and of multiple image queries on the classification
performance. We will describe different techniques for optimizing the smoothing
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parameter with cross validation technique and optimization based on the test set.
The implementation of the scene recognition system will also be detailed in this
chapter.

Chapter 7 demonstrates the second application of the visual graph model,
namelymobile robot localization. The proposed visual graph models adapted to
this image collection will be presented. We will provide theexperimental results
with different impacts of the relation and of the room classification accuracies.
We also give a comparison of the proposed model with the SVM method. Then,
we will discuss on how validation set has been used to choose the appropriate
features for representing the image contents. The post-processing step and the
official results of the run submitted to the ImageCLEF will also be discussed.

Chapter 8 concludes this dissertation with the discussion on the contribution
and also on the perspective of the future works.
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Chapter 2

Image Indexing

To take photographs means to recognize - simultaneously andwithin a fraction of
a second - both the fact itself and the rigorous organizationof visually perceived

forms that give it meaning.
Henri Cartier-Bresson.

2.1 Introduction

In [Marr 1982], Marr described the three layers of a classical paradigm in
machine vision: theprocessing layer(1), themapping layer(2), thehigh-level
interpretation layer(3) (detailed in Figure2.1). These three layers can be aligned
to the three levels of image representation in CBIR, namelyfeature layer(low
level), conceptual layer(middle level) andsemantics layer(high level). The
feature layer concerns how to extract good visual feature from the pictorial data
of an image. This layer is close to the actual computer representation of image.
The conceptual layer maps the low-level signal informationto a higher visual
perception form, called visual concept. A visual concept isrepresented for a set
of homogenous group of visual features. The semantics layerrepresents image
with the highest form of knowledge representation which is close to the human
understanding, i.e., textual description or textual concept.

For this reason, the “semantic gap” is often referred to “the lack of co-
incidence between the information that one can extract from the visual data
and the interpretation that the same data have for a user in a given situation”
[Smeulderset al.2000]. More precisely, it is the lack of knowledge representation
between the low-level feature layer and the high-level semantics layer. Since this
problem is still unsolved, our objective is to inject a newintermediate-levelof
image representation in between conceptual layer and semantics layer. We believe
that will help to reduce thisgap.

13
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Figure 2.1: Illustration of Marr’s paradigm [Marr 1982] for a vision system.

In this chapter, we will describe the works concerning mostly the first two
layers (visual feature layer and conceptual layer) in a CBIR system. In the
next section, we will present three different methods for region extraction:
grid partitioning, region segmentation and interest pointdetection. Section2.3
provides the information on the visual features extractionstep. Section2.4 gives
more details on the indexing models, such as vector model, bag-of-words model
and latent semantics indexing model, from the CBIR fields. Finally, section2.5
will summarize this chapter.

2.2 Image representation

In CBIR, images are often divided into smaller parts to extract visual features
from each part. The objective of image partitioning aims at obtaining more
informative features by selecting a smaller subset of pixelto represent a whole
image. Several image representations have been proposed. In this section, we
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summarize some frequently used methods in CBIR such as uniformpartitioning
into regular grid, region segmentation or local region extraction.

2.2.1 Grid partitioning

This is a simple method for segmenting an image. A rectangular grid with
fixed-size [Fenget al.2004] slides over (can be overlap) the image (see Figure
2.2). For each rectangular grid, a feature vector is extracted.The rectangular
size can be variable to make a multi-scale version [Lim & Jin 2005] of grid
partitioning. Combining overlapping and multi-scale partitioning enables to cope
with changes in object positions and image scale changes.

Figure 2.2: An image decomposed into 5x5 sub-images using regular grid

Using grid provides a number of advantages. The performanceof rectangular
grid as pointed out in [Fenget al.2004] is better than the method based on region
segmentation in annotation tasks. In addition, there is a significant reduction in
the computational time required for segmenting the image. Grid partitioning (with
more regions than produced by the segmentation algorithm) allows the model to
learn how to associate visual features with images using a much larger set of
training samples.

2.2.2 Region segmentation

Segmenting an image into regions may help to find out the relations between
visual features and objects contained in the image. Image segmentation frees
us from considering every pixel of the image but rather only groups of pixels
that condense more information during subsequent processing. As defined in
[Smeulderset al.2000], there are two types of image segmentation:

• Strong segmentationis a division of the image data into regions in such a
way that region T contains the pixels of the object O (T = O).
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• Weak segmentationis a grouping of the image data in conspicuous regions
T internally homogeneous according to some criterion, hopefully with T a
subset of O (T ⊂ O).

These segmentation algorithms are based on some homogeneity criterion in
each region such as color and texture. It is also difficult to obtain a strong
segmentation so that each region contains an object. The weak segmentation helps
to eliminate this problem and sometimes helps to identify better objects in image
[Carsonet al.1999].

Many algorithms have been proposed for region segmentation. A graph-
based algorithm has been used to find minimum normalized-cut(or N-cut)
[Shi et al.1998] in a pixel graph of image. ANormalized-cutalgorithm gives
bad results with cluttered background as they use only coloras homogeneous
criterion. The computational time of N-cut algorithm is also excessive due to the
operation based on complex graph. The Blobworld system [Carsonet al.1999]
used this algorithm to build image tokens (often called blobs).

Figure 2.3: Example of image segmentation using the Mean-shift algorithm

Likewise, themean-shift segmentation[Comaniciu & Meer 2002] algorithm
searchs for a higher density of data distribution in images.The mean-shift
segmentation algorithm is recognized as a very flexible algorithm (user can choose
different parameters: window size, filter kernel, region threshold, etc...) and
perhaps the best segmentation technique to date.

2.2.3 Interest point detection

Saliency-based models have been studied for image indexingand retrieval by
[Schmid & Mohr 1997, Hare & Lewis 2005] for several years and later have been
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experimented for the object recognition by [Lowe 1999]. The saliency regions
are extracted from the interest points using local detector, such as Harris corner
[Harris & Stephens 1988], Different of Gaussian (DOG) detector [Lowe 1999]
and affine invariant point [Mikolajczyk & Schmid 2002] (see Figure2.4). These
points are localized in the zones of the image which contain rich information.
They held also some invariant properties to image transformations (e.g., affine,
scale, rotation) and illumination conditions.

Figure 2.4: Saliency regions detected using different methods: Haris-Laplace,
DOG and LOG [Mikolajczyk & Schmid 2002].

The saliency region-based model has shown good performancein object
recognition problems with very high accuracy on some limited object databases
and with certain kind of objects (building, car, bicycle ...) [Lowe 2004]. However,
dealing with more general objects and with a large dataset, the performance of
saliency-based decreases substantially.

2.3 Visual features

2.3.1 Color histogram

RGB space. This is the fundamental representation of color in computer.
RGB uses an additive model in which red (R), green (G) and blue (B)are
combined in various ways to reproduce the color space. This color model is
simple. But it is sensitive to illumination changes. Nevertheless, this color model
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in widely used in object recognition [Duffy & Crowley 2000] and in region-based
color retrieval systems [Carsonet al.1999].

HSV1 space. Artists sometimes prefer to use the HSV color model over
alternative models such as RGB or CMYK2 space, because of its similarities to
the human color perception. HSV encapsulates more information about a color.
Using this color model in object representation has shown its efficiency and its
invariance to illumination changes.

L*a*b space. The CIE 1976 L*a*b color model, defined by the International
Commission on Illumination (Commission Internationale d’Eclairage, hence its
CIE initialism), is the most complete color model used conventionally to describe
all the colors visible to the human eye. The three parametersin the model
represent the lightness of the colorL, its position between magenta and green
a∗ and its position between yellow and blueb∗. This color description is very
interesting in the sense that computer perceives the color close to the human
vision.

According to a color sapce, acolor histogramis then extracted for each
image. Considering a three-dimensional color space(x, y, z), quantized on each
component to a finite set of colors which correspond to the number of binsNx,
Ny, Nz, the color of the imageI is the joint probability of the intensities of
the three color channels. Leti ∈ [1, Nx], j ∈ [1, Ny] and k ∈ [1, Nz]. Then,
h(i, j, k) = Card{p ∈ I | color(p) = (i, j, k)}. The color histogramH of image
I is then defined as the vectorH(I) = (..., h(i, j, k), ...).

In [Swain & Ballard 1991], an image is represented by its color histogram.
Similar images are identified by matching theirs color histograms with the
color histogram of the sample image. The matching is performed by his-
togram intersection. Similar approach has been installed in the QBIC3 system
[Flickneret al.1995]. This is also the first commercial image retrieval system
developed by IBM. This method is robust to changes in the orientation, scale,
partial occlusion and changes of the viewing position. However, the main
drawback of the method is its sensitivity to illumination conditions as it relies
only on color information.

2.3.2 Edge histogram

Edge or shape in images constitutes an important feature to represent the
image content. Also, human eyes are sensitive to edge features for object recog-
nition. Several algorithms have been applied for edge detection using different

1Hue Saturation Value
2Cyan Magneta Yellow blacK
3http://wwwqbic.almaden.ibm.com/
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methods [Harris & Stephens 1988, Ziou & Tabbone 1998], such as, Prewitt and
Sobel mask, Canny filter, or Laplacians of Gaussian filters, etc. As shown in
Figure2.5, edge detection process preserves only the important information on the
contours of the object. These contours are then described bythe shape descriptors
(or edge histogram) and stored for further matching step.

Figure 2.5: Edge detection using Sobel mask.

In the literature, various shape descriptors have been proposed, for example,
chain code boundary [Freeman 1974], Shape Context [Belongie & Malik 2000],
and Radon transform descriptor [Tabboneet al.2006], etc. The edge histogram is
invariant to imagetranslationandrotation, and normalizing the histogram leads
to scale invariance. Exploiting the above properties, these methods are usefulfor
object recognition [Belongieet al.2002, Ferrariet al.2010] and image retrieval
[Zhang & Lu 2001, Prasadet al.2001].

As proposed in [Wonet al.2002], the local edge histogram has been used for
shape descriptor in MPEG-7 video standard. Basically, the local edge histogram
represents the distribution of 5 types of edges in each localarea called a sub-
image. As shown in Figure2.6, the sub-image is defined by dividing the image
space into4 × 4 non-overlapping blocks. Hence, the image partition always
yields 16 equal sized sub-images regardless of the size of the original image.
To characterize the sub-image, a histogram of edge distribution is generated for
each sub-image. Edges in the sub-images are categorized into 5 types: vertical,
horizontal, 45-degree diagonal, 135-degree diagonal and non-directional edges.
Thus, the histogram for each sub-image represents the relative frequency of
occurrence of the 5 types of edges in the corresponding sub-image. As a result,
each local histogram contains 5 bins. Each bin corresponds to one of 5 edge types.
Since there are 16 sub-images in the image, a total of5× 16 = 80 histogram bins
is required.
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Figure 2.6: Local edge histogram extraction for an image with MPEG-7 standard
[Wonet al.2002].

2.3.3 Scale Invariant Feature Transform (SIFT)

SIFT extractor has been first introduced in [Lowe 1999]. These features be-
long to the class of local image features. They are well adapted for characterizing
small details. Moreover, they are invariant to imagescaling, imagetranslation,
and partially invariant toillumination changesand affine for 3D projection.
Thanks to these invariant properties, SIFTs are become moreand more popular
visual features for image and video retrieval [Lazebniket al.2006, Lowe 2004].

First, features are detected through a staged filtering approach that identifies
stable points in scale space. The result of this detection isa set of key local
regions. Then, given a stable location, scale, and orientation for each key point,
it is possible to describe the local image regions in a mannerinvariant to these
transformations. Key locations are selected at maxima and minima of a difference
of Gaussians (DOG) applied in scale space. The input imageI is first convolved
with the Gaussians function to give an imageA. This is then repeated a second
time with a further incremental smoothing to give a new imageB. The difference
of Gaussians function is obtained by subtracting imageB fromA. This difference
of Gaussians is formally expressed as:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
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with k corresponding to the strength of smoothing and

G(x, y, σ) =
1

2πσ2
exp−(x2 + y2)/2σ2

Figure 2.7: Construction of the scale space pyramid.

This differentiation process is repeated with different values ofk. A change of
scale consists of sampling the smoothed images by using a bilinear interpolation.
The combination of scaling and smoothing produces a scale space pyramid. An
overview of the scale/space construction is shown in Figure2.7.

Minima and extrema detection ofD(x, y, σ) uses this scale space pyramid and
is achieved by comparing each sample point to its neighbors in the current image
and 9 neighbors in the scale above and below. It is selected only if it is larger than
all its neighbors or smaller than all its neighbors. The result of this selection is
a set of key-points which are assigned a location, a scale andan orientation (i.e.
obtained by gradient orientation computation).

The last step consists of assigning a numerical vector to each keypoint. The
16 × 16 neighborhood around the key location is divided into 16 sub-regions.
Each sub-region is used to compute an orientation histogram. Each bin of a given
histogram corresponds to the sum of the gradient magnitude of the pixels in the
sub-region. The final numerical vector is of dimension 128.
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2.4 Indexing Models

For the past two decades, several indexing models have been proposed in the
literature. The objective of image indexing is to store images effectively in the
database and to retrieve similar images from a database for agiven query image.
Image can be indexed using directly the extracted visual features (such as, color,
texture and shape) with the vector representation. Recently, the bag-of-visual-
features (or bag-of-words) inspired from textual indexingdraw more attention for
its simplicity and effectiveness on storing visual content. This section is dedicated
to the presentation some of these indexing methods.

2.4.1 Vector space model

This is a the simplest model in CBIR system. Images are represented by their
feature vectors. These vectors have the same dimension and normalized with the
same scale (usually between 0 and 1). Thetf.idf4 normalization is often used
in information retrieval and text mining. This technique has also adopted widely
in CBIR systems. This weighting scheme comes from a statistical measure to
evaluate how important a word is to a document in a collectionor corpus. The
importance increases proportionally to the number of timesa word appears in the
document but is offset by the frequency of the word in the corpus.

Given 2 feature vectorsV q andV d extracted from image queryq and image
documentd, the visual similarity is computed using two different measurement
functions:Euclidian distanceor cosines similarity.

Euclidean distance
The Euclidean distance is probably the most common approachto compare

directly two images. GivenV q andV d are two vectors in Euclideann-space, then
the metric distance of two imagesp andq is given by:

d(V q, V d) = ||V q − V d|| =
√

||V q||2 + ||V d||2 − 2V q • V d

The smaller distance indicates the closer of two images are.This value reflects
the visual similarity of the two images.

Cosine similarity
In contrast to the distance measure, two vectorsV q andV d can be considered

to be similar if the angle between their vectors is small. To compute the cosine
similarity, the normalized scalar product is used to measure the angle between two
vectors :

4term frequency, inverse document frequency
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cos(θ) =
V q • V d

||V q||||V d||

In information retrieval, the cosine similarity of two documents will range
from 0 to 1. A similarity of 0 implies that documents are identical, and a similarity
of 1 implies they are unrelated.

2.4.2 Bag-of-words model

A simple approach to indexing images is to treat them as a collection
of regions, describing only their statistical distribution of typical regions and
ignoring their spatial structure. Similar models have beensuccessfully used in
the text community for analyzing documents and are known as “bag-of-words”
(BoW) models, since each document is represented by a distribution over fixed
vocabulary.

Figure 2.8: Image is represented by a collection of visual words
[Fei-Fei & Perona 2005].

The construction of this model is based on four main steps:

1. Image segmentation consists of dividing image into smaller parts. As
introduced in previous section2.2, we can consider different types of image
segmentation such as pixels, regions or interested points.

2. Feature extraction step consists of representing each image region by a set
of visual features as detailed in section2.3. Each feature is quantized and
normalized by a vector with fixed size.
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3. Visual vocabulary construction step converts feature vector represented
image regions to “visual words” or “ visual concepts” (analogy to words
in text documents), which also produces a “visual dictionary” (analogy to
a word dictionary). A visual word can be considered as a representative of
several similar image regions. One simple method is performing k-means
clustering over all the vectors. Visual words are then defined as the centers
of the clusters. The number of the clustersk is the vocabulary size.

4. Each image region is mapped to a certain visual word through a clustering
process and the image can be represented by the quantized vector of the
visual vocabulary.

In step 3, k-means clusteringis performed on a set of visual features to
construct the visual words. We present in the following a brief description of
this algorithm.

K-means clusteringis a popular technique for automatic data partitioning in
machine learning. The goal is to findk centroid vectorsµ1, ..., µk for representing
each cluster. The basic idea of this interactive algorithm is to assign each feature
vectorx to the cluster such that the sum of squared errorErr is minimum

Err =
k

∑

i=1

Nj
∑

j=1

||xij − µi||2

wherexij is thejth point in theith cluster,µi is the mean vector ofith cluster and
Nj is the number of pattern in thejth cluster. In general, the k-means clustering
algorithm works as follows:

1. Select an initial mean vector for each ofk clusters.

2. Partition data intok clusters by assigning each patternxn to its closest
cluster centroidµi.

3. Compute new mean clustersµ1, ..., µk as the centroids ofk clusters.

4. Repeat step 2 and 3 until the cluster criterion is reached.

The initial mean vectors can be chosen randomly fromk seed points in the data
in the first step. The partitioning is then performed from these initial points. In
the second step, to measure the distance between two patterns, different metric
distances (e.g., Hamming distance, Euclidean distance, etc.) can be applied.
Usually, the Euclidean distance is good enough to measure the distance between
two vectors in the same feature space. In step 3, the centroidµi for each cluster is
re-estimated by computing the mean of cluster members. The number of iterations
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can be used in the last step as a convergence criterion. The k-means algorithm has
a time complexity ofO(nk) for each iteration. Only one parameter which needs
to be fixed is the number of clustersk.

As demonstrated in [Fei-Fei & Perona 2005], this model is simple but yet
effective for image indexing. However, the lack of spatial relation and location
information of visual words are the mains drawbacks of this model. Using
this representation, methods based on latent semantics extraction, such as latent
semantic analysis [Monay & Gatica-Perez 2003, Phamet al.2007] and proba-
bilistic latent semantic analysis [Monay & Gatica-Perez 2004] and latent Dirichlet
allocation [Blei et al.2003], are able to extract coherent topics within document
collections in an unsupervised manner. Other approaches are based on discrim-
inative methods with annotated or slightly annotated examples, such as support
vector machine [Vapnik 1995] and nearest neighbors [Shakhnarovichet al.2005].
In the next chapter, we will review of some of these learning methods.

2.4.3 Latent Semantic Indexing

Latent Semantic Analysis (LSA) was first introduced as a textretrieval
technique [Deerwesteret al.1990] and motivated by problems in textual domain.
A fundamental problem was that users wanted to retrieve documents on the basis
of their conceptual meanings, and individual terms providelittle reliability about
the conceptual meanings of a document. This issue has two aspects:synonymyand
polysemy. Synonymydescribes the fact that different terms can be used to refer
to the same concept.Polysemydescribes the fact that the same term can refer to
different concepts depending on the context of appearance of the term. LSA is said
to overcome these deficiencies because of the way it associates meaning to words
and groups of words according to the mutual constraints embedded in the context
which they appear. In addition, this technique is similar with the popular technique
for dimension reduction, i.e., principal component analysis [Gorbanet al.2007],
in data mining. It helps to analyze the document-by-term matrix by mapping the
original matrix into lower dimensional space. Hence, the computational cost is
also contracted.

Considering each image as a document, a coocurrence matrix ofdocument-by-
termM , a concatenation of vectors extracted from all document with model BoW
is built. Following the analogy between textual document and image document,
given a coocurrencce document-by-term matrixM rankr, M is decomposed into
3 matrices using Singular Value Decomposition (SVD) as follows:

M = UΣV t
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where














U : is the matrix of eigenvectors derived fromMM t

V t : is the matrix of eigenvectors derived fromM tM
Σ : is anr × r diagonal matrix of singular valuesσ.
σ : are the positive square roots of the eigen-values ofMM t orM tM

This transformation divides matrixM into two parts. One is related to the
documents and the second related to the terms. By selecting only k largest values
from matrixΣ and keep the corresponding column inU andV , the reduced matrix
Mk is given by:

Mk = UkΣkV
t
k

wherek < r is the dimensionality of the concept space. Indeed, the choice of
parameterk is not obvious and depends on each data collection. It shouldbe large
enough to allow fitting the characteristics of the data. On the other hand, it must be
small enough to filter out the non-relevant representation details. To rank a given
document, the query vectorq is then projected into the latent space to obtain a
pseudo-vector, qk = q ∗ Uk, with dimension reduced.

Recently, LSA has been applied for scene modeling [Quelhaset al.2007],
image annotation [Monay & Gatica-Perez 2003], improving multimedia docu-
ments retrieval [Phamet al.2007, Monay & Gatica-Perez 2007] and indexing
of video shots [Souvannavonget al.2004]. In [Monay & Gatica-Perez 2003],
Monay and Gatica-Perez have demonstrated that the LSA outperformed the pLSA
of more than 10% on annotation and retrieval task based on CORELcollection.
Unfortunately, LSA lacks a clear probabilistic interpretation comparing to other
generative models such as probabilistic latent semantic analysis.

2.5 Conclusion

In this chapter, we have introduced the basic steps in constructing an image
indexing system. Images are decomposed into image regions and then visual
features are extracted for indexing. Each type of image representation and visual
features described in this chapter represents apoint of viewof an image. It can
be combined in different ways for effective use of the retrieval process. Most of
the current approach are based on the early fusion method which relies on the
vector combination for the image indexing. Next chapter will discuss on how the
machine learning methods will be used for image modeling andretrieval.
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Image Modeling and Learning

3.1 Introduction

In the previous chapter, we presented the popular techniques that have been
used for image indexing. An image is decomposed in several ways (from pixels
to image regions) for faciliting visual feature extraction. From the extracted
image regions, several visual features have been considered, such as color
histogram, edge histogram and SIFT. The early image indexing model with vector
representation of the bag-of-word model were also described.

In this chapter, we study some machine learning methods usedfor image
modeling in the literature. Following the paradigm of Marr [Marr 1982], these
steps correspond to themapping layerand theinterpretation layer.

First, we will give an overview on the state-of-the-art of the two major
branches of learning models: generative approaches and discriminative ap-
proaches. The important theory of language modeling for text retrieval will
also be presented. Structured image representation has been introduced early
in the computer vision [Ballard & Brown 1982] and then applied for image
modeling [Boutellet al.2007, Aksoy 2006, Ounis & Pasca 1998]. The main issue
of structured image representation is the matching methodsbased on graph.
Classical approaches on sub-graph isomorphism [Ullmann 1976] are costly and
ineffective, with its computational complexity cast as NP-complete problem.
Modern approaches, such as kernel based and 2D HMMs, expressthe graph
matching by classifying ofpathsandwalkswith SVM kernel or as the stochastic
process of Markov’s model.

Currently, the generative model, such as language modeling [Wu et al.2007,
Maisonnasseet al.2009] are extensively studied for the generative matching
process. We will also give a discussion on this active topic.From these pivots,
we propose an approach that takes the advantage of both graph-based image

27



28 Chapter 3. Image Modeling and Learning

representation and the generative matching process to construct the visual graph
modeling. With this approach, we hope to add a new layer to reduce the semantic
gap discussed in the literature.

Section3.2 presents two methods of generative approaches:Naive Bayes
and Probabilistic Latent Semantic Analysis(pLSA). The language modeling
approach from information retrieval will be detailed in section 3.3. Two others
methods of discriminative approaches, namelyNearest Neighborsand Support
Vector Machine(SVM), will be described in section3.4. Then, section3.5
concentrates on the structured representation of the imagewith the graph model,
such asConceptual Graph(CG) andAttributed Relation Graph(ARG). We will
also introduce some graph matching techniques developed inthe literature, for
exmple, (sub)graph isomorphism, kernel basedmethods andtwo dimensional
multiresolution hidden Markov models(2D MHMMs). Finally, based on the
review of the state-of the art, we propose our graph-based image representation
approach and the matching method inspired from the languagemodeling in
section3.6.

3.2 Generative approaches

3.2.1 Naive Bayes

Naive Bayes is a simple probabilistic classifier based on Bayes’s theorem. It
has a strong condition on the class where each feature is estimated independently.
In general, the probability model for a classifier is a conditional model over a
dependent class variableC with a small number of classes, conditional on several
feature variablesF1 throughFn. Using Bayes’ theorem, we write:

p(C|F1, . . . , Fn) =
p(C) p(F1, . . . , Fn|C)

p(F1, . . . , Fn)

Asume that each featureFi is conditionally independent of every other feature
Fj for j 6= i. This leads to

p(C|F1, . . . , Fn) =
1

Z
p(C)

n
∏

i=1

p(Fi|C)

where Z is a scaling factor dependent only onF1, . . . , Fn. Finally, the
corresponding classifier is defined as follows:

classify(f1, . . . , fn) = argmax
c

p(C = c)
n
∏

i=1

p(Fi = fi|C = c)
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This is known as themaximum a posteriori(MAP) decision rule. This model
is popular in text analysis and retrieval, for example: SPAMemail detection
and document classification. Despite the strong independence assumption,
the naive Bayes classifier has successfuly been used for text classification
[Iwayama & Tokunaga 1995] and scene categorization [Fei-Fei & Perona 2005].
A hierarchical version of this classifier has been developedby David Blei
[Blei 2004] and been applied to both text and image data.

3.2.2 Probabilistic Latent Semantic Analysis (pLSA)

pLSA is a statistical technique for the analysis of co-occurrence data which
evolved from Latent Semantic Analysis (LSA) [Deerwesteret al.1990], proposed
initally by Jan Puzicha and Thomas Hofmann [Hofmann & Puzicha 1998]. In
contrast to standard latent semantic analysis which stems from linear algebra and
downsizes the occurrence tables (usually via a singular value decomposition),
probabilistic latent semantic analysis is based on a mixture decomposition derived
from a latent class model. This results in a more principled approach which has a
solid foundation in statistics.

Considering observations in the form of co-occurrences (w,d) of words and
documents, pLSA models the probability of each co-occurrence as a mixture of
conditionally independent multinomial distributions:

P (d, w) = P (d)P (w|d)

and
P (w|d) =

∑

z∈Z

P (w|z)P (z|d)

wherez is the latent variable or hidden topic extracted from a set oftopicsZ of
image documents.

The standard procedure for maximum likelihood estimation in latent variable
models is the Expectation Maximization (EM) algorithm. EM alternates two
steps: (i) an expectation (E) step where posterior probabilities are computed
for the latent variablesz, based on the current estimates of the parameters, (ii)
an maximization (M) step, where parameters are updated for given posterior
probabilities computed in the previous (E) step. However itis reported that the
pLSA has severe over fitting problems. The number of parameters grows linearly
with the number of documents.

pLSA methods are very popular for text indexing and retrieval [Hofmann 1999]
thanks to its solid probabilistic foundation. This technique was also adopted by the
CBIR community [Lienhartet al.2009, Lu et al.2010] and for image annotation
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[Monay & Gatica-Perez 2004, Monay & Gatica-Perez 2007]. However, estimat-
ing parameter using E-M step is a very costly process which isa main limitation
of this method.

The following section present the principal theory of the language modeling
which is a key model of this thesis. We also give a short surveyof the application
of the language modeling for image classification.

3.3 Language modeling approach

Language modeling (LM) was first introduced in linguistic technologies,
such as speech recognition, machine translation and handwriting recognition
[Rosenfeld 2000]. Ponte and Croft [Ponte & Croft 1998] applied the probabilistic
language modeling in text retrieval and obtained good retrieval accuracies on
TREC collections. Similar to the previous generative models, the documents
are ranked by the probability that the query could be generated by the document
models. The query likelihoodP (D|Q) is computed by using Bayes’ Rule:

P (D|Q) =
P (Q|D)P (D)

P (Q)

We can ignore the normalizing constantP (Q), the former fomular leads to

P (D|Q) ∝ P (Q|D)P (D)

whereP (D) is the prior probability of a document, which is assumed to be
uniform in most cases. Therefore, the documents are ranked equivalent to the
joint probability of P (Q|D). This is known asmaximum a posteriori(MAP)
technique which selects the most probable documentD to maximize the posterior
distribution ofP (D|Q).

3.3.1 Unigram model

The simplest form of language modeling is the unigram model where each
word is estimated independently of each other. To estimate the probability of a
word in the documents, one has to make an assumption about thedistribution
of the data. In the literature, a number of different assumptions have been
made about the distribution of words in document. Themultiple-Bernoulli
distribution captures a set of binary events that some word appears in the
document or not. Therefore, the document can be representedby a binary
vector of 0 and 1 to indicate the occurrence of a corresponding word. The
multiple-Bernoulli distribution is well suited for representing the presence of
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query word and insisting on the explicit negation of words (e.g. apple but not
orange). In [Ponte & Croft 1998], the original language modeling for IR was
based on multiple-Bernoulli distribution assumption. Given multiple-Bernoulli
assumption, the query likelihood gives:

P (Q|D) =
∏

w∈q1,...,qk

P (w|D)
∏

w/∈q1,...,qk

(1− P (w|D))

wherew is a word in documentD. This assumption is simple and straightforward.
However, one limitation of this distribution is that the latter does not deal with
the importance (i.e. the frequency of occurrence) of word inthe document. For
this reason, most of the current modeling assumptions in IR are now centered on
multinomial distributions.

Themultinomial distributiontakes into account the number of occurrences of
words (e.g.apple appears 3 times andorange appears 2 times in the document).
This suggests that the document can be encoded by a vector with the number of
times each word appears in the document. Assuming a multinomial distribution
over words, we can compute the query likelihood using unigram model. The query
likelihood is then calculated using unigram model for the document as follows

P (Q|D) =
m
∏

i=1

P (qi|D)

whereqi is a query word andm is the number of word in the query. To calculate
this score, probability of query wordqi is estimated from the document

P (qi|D) =
#(qi, D)

#(∗, D)

where#(qi, D) is the number of times wordqi occurs in documentD, and
#(∗, D) is the total number of words inD. For a multinomial distribution,
maximum likelihood refers to the estimate that makes the observed value of
(qi, D) most likely.

One problem with this estimate is that if any of the query words is missing
from the document, the score of query likelihood will be zero. This is not
appropriate for long query which may have frequently “missing words”. In
this case, it should not yield a zero score. To overcome this problem, one
solution is to give a small probability for missing words which will enable the
document to receive a non-zero score. In fact, this small probability is taken
from the prior information of the document collection. Thissolution is known as
smoothingtechniques ordiscountingtechniques. We will address this problem in
the following section.
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3.3.2 Smoothing techniques

Smoothingis a popular technique used in information retrieval to avoid the
probability estimation problem and to overcome the data sparity of collection.
Typically, we do not have large amount of data to use for the model estimation.
The general idea is to lower (ordiscount) the probability estimates for words that
are observed in the collection and apply that probability tothe unseen words in
the document.

A simple method is known as theJelinek-Mercer smoothing[Jelineket al.1991]
involving the linear interpolation of the LM from the whole collectionC. Given
P (qi|C) is the probability of query wordqi estimated from the collectionC andλ
is the smoothing coefficient assigned to the unseen word, theestimate probability
of query from document model becomes:

P (qi|D) = (1− λ)P (qi|D) + λP (qi|C)

The collection model for estimating the query wordqi is P (qi|C) = #(qi,C)
#(∗,C)

,
where#(qi, C) is the number of time query wordqi appears in collectionC and
#(∗, C) is the total number of words in the whole collection. Substituting this
probability in the query likelihood gives:

P (Q|D) =
m
∏

i=1

((1− λ)
#(qi, D)

#(∗, D)
+ λ

#(qi, C)

#(∗, C)
)

The smoothed probabilities of document model still verify
∑n

i=1 P (qi|D) = 1.
This smoothing method is simple and straightforward. However, it is more
sensitive toλ for the long queries than the short queries. The reason is long
queries need more smoothing and less emphasis on the weighting of words.

Another smoothing technique calledDirichlet smoothingtakes into account
the document length. The parameterλ becomes

λ =
µ

#(∗, D) + µ

whereµ is a parameter whose value is set empirically. The probability estimation
of query wordqi leads to:

P (qi|D) =
#(qi, D) + µ#(qi,C)

#(∗,C)

#(∗, D) + µ

Similar to Jelinek-Mercer smoothing, parameterµ gives more importance to the
relative weighting of words for small values. On the other hand, this parameter
also takes into account the prior knowledge of long documents. Therefore,
Dirichlet smoothing is generally more effective than Jelinek-Mercer, especially
for short queries that are common in the current retrieval engines.
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3.3.3 n-gram model

The extension of unigram to the higher order language model is known as
n-gram language model. In n-gram model, the probability of estimate for word
qi depends on then − 1 preceding words. Hence, it is able to model not only
occurrences of independent words like unigram model, but also the fact that
several words often occur together. This effect is interesting in text retrieval
because the combination of words can have different meaningcomparing to the
same words used independently (e.g. “swimming pool” or “Wall Street Journal”).
The n-gram models will help to capture efficiently this cooccurrence information.

The query likelihood probabilityP (Q|D) of observing the queryQ =
(q1, . . . , qm) is approximated as:

P (Q|D) =
m
∏

i=1

P (qi|q1, . . . , qi−1, D)

Following the assumption that the probability of observingthe wordqi in the
context history of the precedingi−1words can be approximated by the probability
of observing it in the precedingn− 1 words (nth order Markov property):

P (Q|D) ≈
m
∏

i=1

P (qi|qi−(n−1), . . . , qi−1, D)

The conditional probability can be calculated from n-gram frequency counts:

P (qi|qi−(n−1), . . . , qi−1, D) =
#(qi−(n−1), . . . , qi−1, qi, D)

#(qi−(n−1), . . . , qi−1, D)

Thebigramandtrigram language models correspond to language models with
n = 2 andn = 3, respectively. Similar to the unigram model, n-gram modelsalso
suffer from the problem of probability estimation. Hence, smoothing technique is
also required to overcome this problem. The occurrence of bigrams or trigrams
in the document to some extent are rather rare comparing to the unigram. More
details on the smoothing techniques with n-gram models (such as Good-Turing
discounting, Witten-Bell discounting, etc.) can be found in[Jelinek 1998].

Although the standard language models have yielded good performance in
text retrieval, several works have investigated further the use of more advanced
representations of words within this framework. Gao [Gaoet al.2004] and Lee
[Leeet al.2006] proposed to incorporate syntactic dependencies structure in the
language model. These models defined alinkage over query terms which is
related automatically through a parse in document. However, there is a certain
ambiguity in the way the linkage is used in this model. As pointed out in
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[Maisonnasseet al.2008], this model is theoretically inconsistent to represent
graphical structure in the language modeling approach to IR.

In contrast, Maisonnasse [Maisonnasseet al.2008] relied on the notion of
graph model to integrate the relation between concepts in the language modeling.
Concepts and semantic relations are extracted from knowledge source such
as UMLS1 for medical concepts. The authors also proved that the use of
concept and the semantic relation on graph achieved a substantial improvement
over purely term-based language models (such as unigram andn-gram model).
Based on this work, we will extend the graph-based language modeling in
[Maisonnasseet al.2009] to take into account of the visual elements and their
spatial relations in a unified framework for image retrieval.

3.3.4 Language modeling for image classification

Language modeling has also been applied for capturing the spatial information
of the BOW models for image classification. Tirilly et al [Tirilly et al.2008]
proposed to use the principal component analysis (PCA) to findthe main axis
of visual words to be extracted from object. Keypoints are then orthogonally
projected back to main axis to construct a visual sentence. The authors also
applied the pLSA method in order to eliminate the noisy visual words. Then-
gramsmodel is estimated for each object. The retrieval process issimilar to
the one of textual document in standard language model. Thismethod has been
experimented on CALTECH-101 image dataset and obtained a promising result
for image classification. However, this method is limited toone object per image
because of its sensibility in selecting the main axis with PCA. Moreover, the
spatial relation of visual word in this case needs more explanation.

Figure 3.1: Visual words are considered as words in a visual sentence. The
construction is followed by two steps: (a) main axis is defined by PCA and (b)
keypoints is then orthogonally projected back to main axis to construct a sentence.

Similar work has been exploited by Wu et al. [Wu et al.2007]. Image
is divided into regular patches. Each patch is conditionally dependent on the
neighbors from top and from left of the current patch. This relation is interesting

1Unified Medical Language System
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in the sense that it captures the most basic relation in imagewhich is analogous to
the relation of words in a document. Three language models (unigram, bigrams
andtrigrams) constructed follow strictly the theoretical language model. For this
reason, the model is hard to extend for more complicated relation between visual
words.

3.4 Discriminative approaches

Unlike the generative approach, which is based on the probabilistic principle,
the discriminative approach treats each document as a pointin some geometric
space. There is no explicit assumption on the data itself. The principle is ”let
data speaks”, which means the model will find the decision boundary to separate
automatically the annotated samples for the training set and the generalizes to the
test sets.

3.4.1 Nearest neighbors approach

Nearest neighbors ( or k-NN) is a well-known method for object classification
in pattern recognition [Shakhnarovichet al.2005]. The main principle is to match
a test sample to the given training samples. An object is classified by amajority
voteof its neighbors, with the object being assigned to the classmost common
amongst itsk nearest neighbors (k is usually small). Ifk = 1, then the object is
simply assigned to the class of its nearest neighbors.

A drawback to the basicmajority votingclassification is that classes with the
more frequent examples tend to dominate the prediction of the new sample, as
they tend to come up in thek nearest neighbors when the neighbors are computed
due to their large number. One way to overcome this problem isto weight the
classification taking into account the distance from the test point to each of itsk
nearest neighbors.

3.4.2 Support Vector Machines (SVM)

SVM is the most popular discriminative algorithm for classification. In-
troduced by Vapnik in 1995 [Vapnik 1995], SVM has since become one of
the most developed classification algorithms, especially for pattern recognition.
The strength of SVM is twofold: in terms of maximizing the margins around
the separator hyperplane it provides good capacity of generalization and the
application of kernel allow it to solve the problem of non linear separable space.

Figure3.2 illustrates the operation of SVM for classification in a linear space
of two dimensions.H denotes the hyperplane which separated white dots and
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Figure 3.2: SVM is to search for the maximal margin that separates the training
set in a linear space of two dimensions. In this case, the training set is separable.

black dots.
Let L be the set of training points, where each pointxi has m attributes (i.e.

vector of dimensionality m) and belongs to one of two classesyi ∈ {−1,+1}.
Here we assume the data are linearly separable, meaning thatwe can draw a
hyperplane on the spaceL. This hyperplane can be described byw · xi − b = 0
where:

• w is normal to the hyperplane.

• b
||w||

is the perpendicular distance from the hyperplane to the origin.

Then the goal is to minimize the value||w|| of the margin such that the objec-
tive function is maximum. Minimizing||w|| is equivalent to minimizing1

2
||w||2

and the use of this term makes it possible to perform Quadratic Programming (QP)
optimization . Therefore, we need to find:

min
1

2
||w||2

subject to
yi(w · xi − b)− 1 ≥ 0, ∀i

In order to cater for the constraints in this minimization, we need to allocate
them Lagrange multipliersαi. It can be shown that this is equivalent to the
minimization of:

min
w,b,α

{1
2
‖w‖2 −

n
∑

i=1

αi[yi(w · xi − b)− 1]}
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with αi ≥ 0 and under constraint
∑n

i=1 αiyi = 0. This can be achieved by
the use of standard QP methods. Once we obtained the solutionvectorα0 of the
minimization problem, the optimal hyperplane(w0, b0) will be defined by:

w0 =
i=1
∑

n

α0
i yixi

Points corresponding to solutionα0 are calledsupport vectors. The decision
rule for new pointx is then defined by functionf(x) :

f(x) =
i=1
∑

n

α0
i yixi · x− b0

The sign of f(x) is usually used as binary decision. If it is positive (respectively
negative), the test pointx belongs to the class of training set with label +1
(respectively -1 ).

This approach can also be applied to non linear separable data with some
mapping functionsΦ(x) of the input feature vectors into a high-dimensional
feature space (see Figure3.3). This technique is calledkernel trick. The kernel
trick is useful because there are many classification/regression problems that are
not linearly separable/repressible in the space of the input features.

Figure 3.3: Example of Radial Basis Function (RBF) kernel mapping data from
non linear separable space to high-dimensional separable space.

The kernel is expressed by the dot product of mapping function which gives
K(xi, xj) = Φ(xi) · Φ(xj). Once kernelK satisfying the Mercer condition2, the
output function then becomes:

2symmetric and positive matrix
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f(x) =
i=1
∑

n

α0
i yiK(xi, xj)− b0

There are different types of kernel, such as polynomial kernel, sigmoid kernel
and radial basis kernel. But the most commonly used in patternrecognition is
radial basis function (RBF) kernel, defined as follows:

K(x, y) = e−
||x−y||2

2σ2

where||.|| isL2-norm of two vectorsx andy andσ is the smoothing parameter of
Gaussian function. In general, this parameter is estimatedby cross validation on
the data from training set.

3.5 Structured representation approaches

Most of the learning methods described previously are basedon the bag-
of-words models, thus taking into account only the visual information in the
form of vector representation. The spatial information among visual features
is disregarded. Although this representation is simplistic, the result proved
surprisingly promising. Some efforts have been attempted to go beyond this
primitive and flat representation ofbag-of-wordsmodel by adding visual feature
correlation information [Lazebniket al.2006]. However, none of them really
considered the spatial relationship between image regions. This section aims
at introducing some state-of-the-art in graph representation, which is popular in
interpreting structural information, and learning methods for image matching.

3.5.1 Graph for image modeling

Graph is one of the most formal representations of structural information in
computer vision [Marr 1982]. It is a natural way to encode the relation between
objects. A famous example of graph is presented in a book of computer vision by
Ballard and Brown [Ballard & Brown 1982]. The idea is to represent structural
information of face by a set oftemplatesconnected bysprings. Nodes represent
the instances of face, for example: eyes, nose, mouth, hair,etc. Edges indicate
the structural relations between these instances. This is one of the most primitive
forms for representing a graph where nodes and edges indicate the object instances
and links between them respectively. However, suffering from the combinatorial
explosion issue in graph matching, the classical graph representation has not been
used widely for image modeling in image retrieval.
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Figure 3.4: An example of graph representation for human face
[Ballard & Brown 1982].

For real image representation, nodes and edges are associated with a set of
labels. Harchaoui and Bach [Harchaoui & Bach 2007] presented their images
by a planar graph where each node corresponds to a segmented region and
edge corresponds to a link between two connected regions. One interesting
constraint is all the regions are non-overlapping, thus creating a planar graph.
This representation is simple and intuitive, although the inferring process on these
graph representations is challenging problem. A method to reduce the complexity
of this graph, combining with kernel methods, will be introduced in the next
section.

Figure 3.5: An example of planar graph extracted from an image. Segmented
regions are obtained by using the median RGB color. [Harchaoui & Bach 2007]

Conceptual graphs have been first introduced in the early 80’sto model
knowledge representation. In [Sowa 1984], Sowa presented the theoretical
formalism for conceptual graph which was consistent and flexible for knowledge
representation. This framework can capture semantic representation of data and it
offers some useful extension which is likely applicable forother knowledge-based
representation such as semantic web or data mining.



40 Chapter 3. Image Modeling and Learning

Conceptual graphs are widely considered as a chanel to express the represen-
tation of image content. Figure3.6 illustrates an example of conceptual graph
extracted from a landscape scene. Nodes represent the visual entities composed
of image and directed arcs indicate semantic relations between these nodes.
Conceptual graphs have also been used for scene recognition [Boutellet al.2007]
and for image retrieval [Ounis & Pasca 1998]. With the integrating of semantic
relations, conceptual graph allows to describe better the nature of image contents
[Mulhemet al.2001, Boutellet al.2007].

Figure 3.6: Example of a conceptual graph extracted from natural scene: (a)
original image, (b) manual segmented image, (c) conceptualgraph representation.

An extension of conceptual graph is attributed relational graph (ARG) where
nodes and relations are associated with some attributes represented by their
weights or their probability of contribution [Mulhemet al.2001]. Attributed
relational graphs have been widely used for image modeling [Aksoy 2006] and
near duplicated image detection [Zhang & Chang 2004]. One advantage of the
ARG is that it can be used to represent complex visual content in the very
flexible way. Node and link can be easily embedded with some properties, such
as weight, numeric or symbolic value or even with the estimated probabilities
[Boutellet al.2007].

Figure 3.7 presents some of the attributes used for representing the spatial
relations between two image regions. With this representation, the spatial
relationships among regions are expressed with more details, for instance,
symbolic relationsnear andfar, or relative distanced = 0.35 and relative angle
a = π/3, etc. However, matching the attributes relation graphs requires a special
technique to adapt to some specific problems. We will presentin the next section
some matching algorithms for graph-based image presentation in the literature.

3.5.2 Matching methods on graphs

After defining a graph based on their representation, several matching process
on graph have been summarized in [Ballard & Brown 1982]:
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Figure 3.7: Spatial relationships of region pairs:disjoined, bordering, invaded by,
surrounded by, near, far, right, left, aboveandbelow[Aksoy 2006].

• Exact matching: graph isomorphism, subgraph isomorphism (see Figure
3.8).

• Inexact matching: partial graph matching, attributed graph matching.

Figure 3.8: Exact graph matching: graph (a) has an isomorphism with graph (b)
and has various subgraph isomorphism with graph(c) [Ballard & Brown 1982].

Graph matching is related to string theory [Gusfield 1997] (such as substring
matching and edit distances) which is complex and costly operation. Therefore,
exact graph matching is a combinatorial problem and subgraph matching is a NP-
complete problem [Ullmann 1976]. The deterministic algorithms run (in the worst
case) in time exponential with the size of the constructed graphs. Several works
[Shokoufandehet al.2002, Cordellaet al.1998] have been involved to solve the
graph matching problem in polynomial time. However, these algorithms are very
complicated in implementation. Soft graph matching have toadapt to the nature
of the application [Shokoufandehet al.2002]. Hence, most of works so far have
focused on finding the approximate solutions to this problem.
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To compute the similarity of conceptual graph, several matching methods have
been proposed, such as: partial subgraph isomorphism [Ullmann 1976], error cor-
rection graph matching [Mulhemet al.2001], median graphs [Jianget al.2001].
As demonstrated in [Ballard & Brown 1982] the matching algorithms of con-
ceptual graph may also suffer from the computational problems as they used
basically the morphological matching algorithm. In [Ounis & Pasca 1998],
authors proposed to use inverted file for indexing and retrieval of conceptual
graph extracted manually from images to accelerate the performance of graph
matching. Recently, Kostin et al. [Kostinet al.2005] have applied probabilistic
relaxation matching technique for object recognition. Despite the fact that graph
matching is still a challenging problem, graphs are very promising for structural
image representation.

Recently, applications of kernel-based methods are widely used for semi-
supervised learning [Shawe-Taylor & Cristianini 2004, Bachet al.2004] and in
computer vision [Suardet al.2005]. In [Harchaoui & Bach 2007], authors pro-
posed a method to combine graph planarity with a kernel of a SVM classifier
for image classification. Image is represented as a planar graph in which labeled
nodes correspond to segmented regions and edges are the neighboring regions.
Image graphs are fixed with the same number of segments. Figure 3.9 shows a
simple planar graph constructed for an image. Each color represents a different
label and each edge encodes a spatial relation.

Figure 3.9: Enumeration of paths and walks from a simple graph. Walk is a finite
sequence of neighboring vertices, while apath is a walk such that all its vertices
are distinct (inside the rectangle) [Harchaoui & Bach 2007].

Kernel graph is an efficient way to solve the graph matching problem by
soft-matching tree-walks in order toobtain kernels computable in polynomial
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time [Harchaoui & Bach 2007]. The kernels keep the underlying topological
structures of graph throughwalks and paths (see Figure3.9). Moreover, the
kernels also embed the local information of the segments (such as color histogram
of local features). Due to the computational operation onpaths, the authors choose
to implement only the kernels withwalks. After defining a corresponding walks
kernel (for example Dirac kernel for exact graph matching) between two graphs,
these parameters are then fed to SVM classifiers for training. This work showed
very promising results on image classification.

Likewise, Li and Wang [Li & Wang 2003] introduced a statistical modeling
approach to the problem of automatic linguistic indexing ofpictures. A two
dimensional multiresolution hidden Markov models(2D MHMMs) is used to
model the stochastic process of associating an image with the textual description
of a concept. First of all, each image is summarized by a collection of feature
vectors extracted and spatially arranged on a pyramid grid (see Figure3.10).
The 2D MHMM aims at describing statical dependence of the feature vectors
at multiresolution and their spatial relations in the same resolution. The number
of block is reduced by half at each lower resolution. Blocks atlower resolution
cover spatially more abstract information of the image.

Figure 3.10: The hierarchical statistical dependence across different resolutions
[Li & Wang 2003].

Images are trained based on given concepts. For example, conceptParis/France
includes images with category description such as “Paris, european, historical
building, beach, landscape, water”. This helps to improve statically the 2D
MHMM profile for each visual concept. For a test image, feature vectors are
extracted from the pyramid grid. The likelihood of the feature vectors being
generated by each profiling 2D MHMM is computed. Images are ranked based
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on their likelihood with each image concept. This approach is interesting in the
sense that it considers a statistical model for each group ofimages. Moreover, it
takes into account the spatial information throughout the 2D HMM framework.
This method has shown good accuracy and also has a high potential for automatic
image annotation. However, it is limited for image retrieval as the matching
process based on the Markov’s model is time consuming.

3.6 Our proposition within graph-based framework

Firstly, we aim to provide an alternative method for image modeling which
can consider different type of image representations and different visual features.
The need of a model that could take several image points of views is one of our
objectives. We are also motivated by the fact that there is still a gap between the
low-level features model and that of the high-level semantic ones. We create an
intermediate-level image representation layer between image semantics and the
middle-level of concepts included various visual featuresalong with the spatial
relations among them. Such image representation layer can easily describe the
image contents, for example, “building is in the left of the tree”, “ cloud is in the
top of the building”, etc.

Secondly, generative models have been around for decades and been applied
successfully to textual retrieval. These methods are both practical in terms of
implementation and effective in term of computational cost. Moreover, the ex-
tension of the generative matching process does exist for the complex knowledge
representation, such as for conceptual graph [Maisonnasseet al.2008]. To the
best of our knowledge, no one has tried to use generative methods for graph
matching process. In this regard, our second objective is tostudy the effect and
benefit of using a probabilistic framework for matching of the graph-based image
representation.

Therefore, our proposition graph-based framework will include the following
original contributions to the current state-of-the art:

• A unified graph-based representation for image modeling. Our goal
is to automatically deduce for each image a visual graph representing the
image contents. For this, image regions are automatically associated with
the visual concepts, and spatial relations are used for creating links between
these regions and keypoints. The frequency of visual concepts and their
relations are also captured as the weights in our visual graphs.

The advantage of this model is that it offers an intuitive representation
of image content. Moreover, by allowing the user to select the image
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representations (such as visual concepts) and the spatial relations to be
considered it can be more easily matched to a particular image category.

• A generative matching method using language modeling. To reduce the
computational cost, we propose to use the language modelingfor generative
graph matching process. Unfortunately, the current conceptual language
modeling framework is limited to only a set of concept and a set of relation
[Maisonnasseet al.2008]. Therefore, we will extend the theory of this
framework in order to take in to account of multiple concept sets and
multiple relation sets. To do that, we have to make several independence
assumptions based on the concept sets and relation set. We also propose
a simple smoothing method for the probability estimation ofconcept and
relation in this framework.

3.7 Conclusion

To summarize, in this chapter we surveyed the current learning models,
such as generative approaches and discriminative approaches. The important
theoretical aspect of the language modeling inspired from information retrieval
is also provided in section3.3. Furthermore, we have investigated different
structured image representations on image modeling, for instance conceptual
graph and attributed relational graph. We have also studiedsome graph matching
methods based on discriminative approach (such as embedding of paths and walks
in kernel based classification) or generative approaches (such as Markov’s model
and language modeling). Motivated by the limitation of the current state-of-the-
art methods, we have proposed a new approach based on the graph-based image
representation and a generative process for graph matching.

The next part contributes on designing the proposal method.As said, chapter
4 explains how the framework works with three principal steps: image processing,
graph modeling and graph retrieval. Chapter5 details the graph formulation and
the graph matching based on the language modeling. We will give some examples
to illustrate the constructed graph and how we compute the likelihood probability
for a pair of graphs.
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Chapter 4

Proposed Approach

Design is not just what it looks like and feels like. Design is how it works.
Steve Jobs

4.1 Framework overview

Inspired by the bag-of-word model, images are modeled as a set of visual
words (concepts) described and supported by different visual features and rep-
resentations.. As we explained previously, our goal is to automatically deduce,
from a given image, a graph that represents the image content. Such a graph will
contain concepts directly associated with the elements present in the image, as
well as spatial relations which express how concepts are related in the image.

The reason that we have choosen graph as the image representation is
due to its capacity of embedding complex symbolic relationsand attributes of
concepts (such as numerical value or probability estimation). Alternatively, with
this presentation we can apply an extension of language modeling, which is a
generative probabilistic model, for the graph retrieval process.

To do so, we present in this section the system architecture that consists of
three main stages (see Figure4.1).

1. Image processingaims at extracting image regions (i.e., segmentation, grid
partition or saliency point detection) from the image. It also consists of
computing the numerical feature vectors (e.g., color, edgehistogram, and
local feature information) associated with regions or saliency points.

2. Graph modeling consists of two main steps. First, extracted image
regions that are visually similar will be grouped into clusters using an
unsupervised learning algorithm (e.g., k-means clustering). Each cluster
is then associated with a visual concept. The second processconsists of

49
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Figure 4.1: System architecture of the graph-based model for image retrieval.

generating the spatial relations between the visual concepts. After these
two steps, each image is represented by a visual graph generated from a set
of visual concepts and a set of spatial relations among the visual concepts.

3. Graph retrieval is to retrieve images relevant to a new image query. Query
graphs are generated following the graph modeling step described above.
Inspired by the language model for text retrieval, we extendthis framework
for matching the query graph with the trained graph from the database.
Images are then ranked based on their probabilities of the corresponding
graphs.

Indeed, these three phrases are clearly distinct from each other. They can
be associated with the three layers of a classical paradigm in machine vision of
Marr as introduced in chapter2: theprocessing layer(1), themapping layer(2),
the high-level interpretation layer(3). Our contributions are mainly related to
the graph modeling and graph retrieval problem. In the graphmodeling step, we
propose a unified graph-based framework for image representation. After that,
we propose a graph matching algorithm based on the extensionof the language
model that was initially proposed in the information retrieval community. We will
describe these steps in the following sections.

4.2 Image processing

Given an imageI, finding a good representation of image content is a difficult
task. In the literature, we can find various techniques for image segmentation.
In this section, we present three segmentation techniques of image content that
have been applied in our experimentations. As we concentrate more on the
graph modeling process, we choose simple and popular techniques for image
segmenting, such as pixel sampling, grid partitioning and keypoint detection.
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Figure 4.2: Image processing pipeline: (1) Image decomposition, (2) Feature
extraction.

From these primitive regions, we extract different visual features (such as
color, edge orientation and scale invariant features). These features are associated
with one type of image region to represent an image representation (or a point of
view). Our objective is to provide a common framework to effectively represent
the different viewpoints of image contents using a graph model.

4.2.1 Image decomposition

Image region is the primitive part of image representation.Classical ap-
proaches for image representation consider image as a wholein order to take
into account of the global visual information of image content. Recently,
local region approaches try to represent an image as a composition of different
objects (or different parts of object). Several segmentation techniques have been
proposed (e.g., N-cut segmentation [Shi et al.1998] and mean-shift segmentation
[Comaniciu & Meer 2002]). However, these techniques are more computation-
ally consuming compared to the simple technique such as gridpartitioning
[Lim & Jin 2005]. Therefore, we present here three types of image regions used
in our work as depicted in figure4.3.

• Pixel sampling is the basic form of image representation. The idea is to
down-sample the image into smaller set of pixels (i.e., image thumbnail).
Considering equal size rectangles, each image is decomposedinto a set of
n×m regular rectangles. For each of these rectangles, only the center pixel
is considered to represent the contents of this image region. This method
requires less computational effort as the features are already computed.
However, large amount of visual information is reduced after the sampling.

• Grid partitioning divides the image inton × m regular rectangles with
the same size. For example, we apply a regular grid partitioning resulting
in 5 × 5 sub-windows. This value yields 25 rectangular patches for each
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Figure 4.3: Image decomposing into pixel or region: (a) pixel sampling, (b) grid
partioning and (c) keypoint detection.

image which is a good tradeoff between the visual content andthe patch
size. In contrast to the pixel sampling, this method preserves all the visual
information contained in the image patches. However, it requires much
more effort to extract good visual features from these patches.

• Keypoint detection identifies the locations in the image which contain rich
information according to some invariant features. These points possess
some invariant properties to image transformations (e.g.,affine, scale and
rotation). The salient points have shown good performancesin object
recognition with very high accuracy on certain kind of rigidobjects
(building, car, bicycle, etc.) [Lowe 2004]. Salient points are detected based
on the multi-scale filters (e.g., Different of Gaussian (DOG)) in the scale
space. The result is a set of keypoints associated with theirlocations and
scales.

Indeed, invariant keypoints give a good compromise betweenpixel sam-
pling and grid segmenting for image representation. It not only keeps the
important regions of an image but also reduces the computational cost to
generate a set of visual feartures.

4.2.2 Feature extraction

The feature extraction step aims at representing each region as a set of feature
vectors for clustering purposes. We consider here several visual features (i.e.,
several points of views) extracted from one pixel or for an image region. We
denoted the set of visual features asF , which f is a specific visual feature from
F extracted from an image region.

For the pixel sampling method, each region is represented byits central pixel.
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The HSV color value of this pixel can be used as visual featureto represent
images. Each pixel is represented by a 3 dimensional vector .We choose to focus
on the HSV color space because of its robustness against illumination changes.

For image regions, several visual features can be extracted. Color histograms
and edge descriptors [Wonet al.2002] are frequently used as visual features
for image patches as mentioned in chapter2. For the keypoint extraction,
SIFT descriptors [Lowe 1999] are extracted within a given radius around the
keypoint. Note that, we can extract the same visual features(e.g., color and edge
histogram) for the keypoint knowing the region covering around this keypoint.
The dimensionality for each type of visual feature is summarized in Table4.1.

Table 4.1: Summary of visual features used for each type of representation.

Feature typef Quantization Dimensions
(H,S,V) value 3 bins 3

HSV histogram 4 x 4 x 4 bins 64
Edge histogram 16 patches x 5 edge types 80
SIFT descriptor 16 patches x 8 orientations 128

4.3 Visual graph modeling

After the image processing step, we obtain a set of visual features extracted
from image regions. These features are used for visual concept learning using the
unsupervised learning method. These visual concepts, together with the spatial
relations, allow us to form the visual graph which better represents the image
content. Figure4.4shows the pipeline of our graph modeling process.

4.3.1 Visual concept learning

Given a set of featuresF extracted from regions or keypoints, the goal of the
training stage is to classify these feature vectors into thehomogenous groups that
can be represented by a set of visual concepts. For this purpose, we apply the
k-means algorithm to the pool of feature setsF and cluster them to thek clusters.
The clustering algorithm is applied to the set of feature vectors. The result is
a set of numerical labelci associated with each image region or keypoint. For
each visual featuref ∈ F , a corresponding visual vocabularyCf is created. The
number of clusters is the number of visual concepts contained in the corresponding
visual vocabulary.
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Figure 4.4: Visual graph modeling pipeline for image collection.

The reasons why we choose thek − means clustering method, as presented
in chapter2, for visual concept learning over the other methods, such asEM
clustering[Moore 1998], are twofold:

• It is a popular technique used in image retrieval thanks to its simple
implementation and it requires minimum number of paremeterto operate.

• For language modeling, an important assumption over the visual concepts is
that the probability follows themultinomial distributionwhere the random
variables have discrete values. Therefore, other segmentation techniques
are not valid under this framework.

The visual concept learning step will be discussed further in the future works in
chapter8. Meanwhile, we rely on the common bag-of-words representation.
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4.3.2 Visual graph construction

Concept set generation
From the constructed visual vocabularyCf and for each image, we will build

a set of visual concepts that represents its visual content.First, a set of visual
features will be extracted for the corresponding image region, such as pixel,
region or keypoint. Then, the next process assigns each image region to the
nearest cluster based on the distance of the vector quantizing for this visual feature
and the centroid vector of each cluster. Finally, image region is denoted by a
correspondingvisual concept(or conceptin short)ci that it has been associated
to.

Taking the bridge scene in figure4.5 as an example, we can see that the
visual concepts are assigned to the corresponding patches after the concept
set quantization. More precisely, the conceptc1 corresponds to the “tree”,
while conceptc2 and c3 are more likely associated with the “bridge”. In this
way, this image can be denoted by a set of symbolic concepts, for instance
{c1, c1, c1, c2, c2, c2, c3, c3, c4}.

Relation set extraction
Once these visual concepts are defined and characterized independently, the

last step is to define the relationships among them. Existingworks have suggested
the use of topological relations between points [Egenhofer & Herring 1991] or
between regions [Boutellet al.2007, Aksoy 2006]. Inspired by these works, we
will define the similar relationships between the regions and keypoints. Although,
different from the latter approaches, the relation in our context is stricly symbolic
in the sense that it does not take into account any relation attributes. The attributed
relation will be addressed as part of the future work.

Figure 4.5: Example of spatial relations extracted from image. (a) scene of a
bridge, (b) visual concept generation, (c) relationsleft of and top of extracted
from concepts
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We denote a labeled relation asl and a set of labeled relations asL. Figure
4.5 gives an example of spatial relations between visual concepts with STOIC
collection used in chapter6. Relation setsL = {left of, top of} are extracted
from the two connected concepts. These relations help to capture the spatial co-
occurrence information of two visual concepts. For example, instances of the
concept “sky” are usually in thetop of instances of the concept “tree”, while
instances of concept “tree” appears more frequently in theleft of instances of
concept “bridge”. If the number of training images is large enough, the graph
framework will capture the statistical consistency for this type of relation.

Similar to the above, we can denote these relation sets usingsymbolic repre-
sentation, for example{(c1,c1,leftof), (c1,c2,leftof), (c1,c3,leftof), (c3,c2,leftof)},
(c3,c4,leftof), (c4,c2,leftof) and {(c1,c1,topof), (c1,c3,topof), (c1,c3,topof),
(c3,c4,topof)}, (c2,c2,topof), (c2,c2,topof).

Graph formulation

At the end of the graph construction procedure, we obtain a set of visual
conceptsCf and a set of predefined relationsEl for each type of conceptf and
relation l. Each concept is associated with a weight that represents its number
of occurrences in the image. Similarly, each relation is also given a weight
corresponding to the number of times this relation has occurred in the image.
We will denote the weighted concepts set byWCf and the weighted relations set
by WEl. As we may have several image representations (or point of views) and
different kind of spatial relationships between them, we denote a set of weighted
concept sets asSWCF

=
⋃

f∈F WCf and a set of weighted relation sets as
SWEL

=
⋃

l∈LWEl for an imageI.

Given a graph which is represented theoreticaly by a set of nodes and a set of
arcs. We map the set of concept setsSWCF

and the set of relation setsSWEL
to the

set of nodes and to the set of arcs respectively. In our case, we denote this graph
as a visual graphG =< SWCF

, SWEL
>. The weight of concepts and relations

are also mapped with the corresponding nodes and arcs. Thesevisual graphs are
then stored in the graph database.

By using the graph-based representation, we can include several image
representations (i.e., different point of views) into thisgeneric framework. Note
that we tend to choose different representations for image regions (i.e., patch,
keypoint) and visual features (i.e., color, edge, SIFT) which are considered
visually independent of each other to represent image content. Therefore, concept
setsWCf are disjoint. From this stand point, we will make an independent
assumption based on the set of weighted concept setsSWCF

. The similar
assumption is also applied to weighted relation setsSWEL

. The details of graph
formulation will be given in section5.2of the next chapter.
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4.4 Visual graph retrieval

Once the visual graphs are established based on the concept sets and the
relation sets, the next question is how we can compare a new image against the
document graphs stored in our database. Figure4.6 shows the pipeline for our
graph retrieval scheme. The retrieval scheme includes three main stages:

Document graphs

Visual graph
construction

Graph
matching

1

Query graph

2

Graph
ranking

3

Query image

Ranked
list

Figure 4.6: Graph retrieval pipeline for a query image

1. Given a query imageIq, we follow the same process ofgraph modelingas
above to extract the visual feature and cluster them into visual concepts. The
same type of spatial relations are also extracted from the concepts. From
these concept sets and relation sets, a visual graph for userimageGIq is
automatically generated.

2. Graph matching consists of comparing the user query graphGIq with the
trained graphsGId stored in our database. Inspired by the language model
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from the IR domain, which is a generative model, we extend this framework
to take into the account of the multiple concepts and multiple relations
embedded in our graph-based model. We compute the probabilities of
generating of the concept sets and the relation sets assuming concept sets
and relation set are independent.

3. Graph ranking consists of the computing of relevance status values of the
document graph and the query graph in the log-probability space. Finally,
document images are ranked based on their relevance values associated with
the documents graphs.

4.5 Discussion

In this chapter, we have given an overview of the system implemented in
our work. It includes three main layers: theimage processinglayer, thegraph
modelinglayer and thegraph matchinglayer. The main contributions of this
thesis are related to the graph modeling layer and the graph matching layer.
These contributions rely on the graph-based presentation of image content and
the extension of language modeling for graph matching.

The graph modeling consists steps of visual concepts construction and spatial
relation extraction. The visual concepts are learned from the low-level features
(e.g., color, edge, and local features) which are computed directly from different
type of image representations such as pixels, patches or local keypoints, etc.
The visual concepts learning phrase which consists of mapping the low-level
image features into a discrete space of the visual vocabulary is done by thek-
means clustering algorithm. In the other words, the visual concepts represent the
middle layer of image representation. To complete the graph-based representation,
spatial relations are extracted from the visual concepts. It should be considered
that our visual graph model, which adds another layer above the conceptual
layer, represents theintermediate layerof image representation approaching the
semantics layer.

The graph matching stage consists of generating the probabilities of new
graph from the trained graphs in our database. The classicalapproaches of graph
matching are usually complicated and time consuming. Therefore, we would
like to address another perspective of graph matching basedon thegenerative
probabilistic frameworkof language modeling. This approach is simple in term
of computational perfomance, as well as a well-founded theory from IR fields.
The language model has been successful in the text retrievaldomain. Moreover,
the extension of this model is straightforward from our graph-based model. The
next chapter will detail our proposed approach for image retrieval.



Chapter 5

Visual Graph Modeling and
Retrieval

5.1 Introduction

In the previous chapter, we have presented an overview of ourgraph-based
system. This system composes of three main stages: theimage processing step,
the visual graph modeling stepand thevisual graph retrieval step. The image
processing step provides the tool for extracting the low-level visual features (such
as color, texture or edge). The visual graph modeling step includes two processes.
First, it automatically induces a set of visual concept froma set of visual features
based on the unsupervised learning algorithm, e.g., k-means clustering. Second,
the relation extractor generates a set of spatial relationsfrom the constructed visual
concepts. Finally, a visual graph is formulated from these set of concepts and set
of relations. The visual graph retrieval process consists of matching the query
image graph with the graphs stored in the database and ranks the results using
their probability values.

The goal of this chapter is to define formally the visual graphmodel and to
describe the matching process based on the formalism of language modeling. We
will show some examples of graph instance derived from the general graph model.
As we have shown in the chapter3, the main bottleneck of using the graph-based
image representation is the matching step. In the literature, graph matching with
classical algorithm is a costly process. To avoid that problem and to provide a
more reliable matching algorithm, we rely on the idea of language modeling for
generating the query graph from the document graphs in the database. Graphs
are then ranked with their corresponding probability likelihood values. As a
consequence, images are ranked in the lists with the same order of their relevance
values. As we will show in chapter6, the proposed graph model may also be used
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for image categorization. The category of a query image is decided based on the
class of the image which maximizes this probability likelihood.

This chapter is structured into 5 sections. Section5.2 introduces a formal
definition of our visual graph. Also, we give some examples ofgraph instances
used in our application. Section5.3 will show how visual graphs are matched
using our extended language modeling framework. We also give an example on
how we compute the probability likelihood in section5.3.4. Then, section5.4
discusses how we actually rank our graph retrieval results using the relevance
status value. Finally, we conclude the chapter and give someinsight discussions
in section5.5.

5.2 Visual graph formulation

5.2.1 Definition

In this section, we introduce a set of formal definitions associated with the
visual graph. To facilitate reading, the following notations will be used:
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I : an image
GI : visual graph for imageI
F : set of visual features associated with an image region
f : a low-level visual feature,f ∈ F
L : set of possible labeled relations
l : label of relation,l ∈ L
Cf : set of concepts (or visual vocabulary) extracted for a featuref
c : a visual concept,c ∈ Cf
El : set of concept pairs extracted for a relation labeledl
c, c′, l : a labeled relation,c ∈ Cf , c′ ∈ Cf ′ , l ∈ L
WCf : weighted concept set
WEl : weighted relation set
SWCF

: set of weighted concept setWCf

SWEL
: set of weighted relation setWEl

Our visual graph may contain different sets of visual concepts sets and
different sets of relation sets, which reflects multiple points of views (i.e., image
decompositions and low-level visual features). Each visual concept is constructed
for each type of image region and its low-level feature from the collection as in
section4.2. Figure5.1shows how we formulate the set of concept set and the set
of relation set from a collectionC and then transfer them to the formulation of
imageI.
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Figure 5.1: Formulation of the set of concept set and set of relation set from the
image collectionC and for the imageI.

Definition 1 Let F be the set of low-level features. For each featuref ∈ F , CI
f

is the concept set extracted for featuref of an imageI:

CI
f = {c|c ∈ Cf , I}

where c is a visual concept that characterizes imageI. Assuming the
concept set independent hypothesis, we have:

⋂

f∈F

CI
f = ∅

Definition 2 Given the concept setCI
f , WCI

f denotes a weighted concept set
which contains a set of pairs(c,#(c, I)):

WCI
f = {(c,#(c, I))|c ∈ CI

f}
where#(c, I) is the number of times a visual conceptc occurs in the image
I. The weight of concept captures the importance of this concept in the
image. By default,WCI

f captures only the visual conceptc that appears in
the image, which means#(c, I) > 0.

Definition 3 The set of weighted concept setsSI
WCF

is a union of weighted
concept setsWCI

f :

SI
WCF

=
⋃

f∈F

WCI
f
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Assuming the concept set independent hypothesis, the weighted concept
sets are disjoint. We get:

⋂

f∈F

WCI
f = ∅

Similarly, we define the relation sets extracted from the visual concepts for an
imageI as follows.

Definition 5 Let L be the set of the possible labels. For each labeled relation
l ∈ L, the relation setEI

l is defined by:

EI
l = {((c, c′), l)|(c, c′) ∈ CI

f × CI
f ′ , l ∈ L}

where(c, c′) is a pair of concept extracted from two concept setsCI
f and

CI
f ′, andl is a relation that occurs in the imageI.

If a pair of concepts(c, c′) comes from the same concept set (i.e.,CI
f = CI

f ′),
we refer this relation set asintra-relation set. Otherwise, if it comes from
two concept sets extracted from different visual features (i.e., CI

f 6= CI
f ′),

we refer this relation set asinter-relationset.

Assuming the relation set independent hypothesis, we have:
⋂

l∈L

EI
l = ∅

Definition 6 Given relation setEI
l , WEI

l denotes a weighted relation set which
represented by a set of triplet((c, c′), l,#(c, c′, l, I)):

WEI
l = {((c, c′), l,#(c, c′, l, I))|(c, c′) ∈ CI

f × CI
f ′ , l ∈ L}

where#(c, c′, l, I) is the number of timesc andc′ are related with labell
in imageI. The weight of relation signifies the relation importance asthe
frequency appeared in the image. By default, we capture only the relation
that appears in the imageI, therefore,#(c, c′, l, I) > 0.

Definition 7 The set of weighted relation setsSI
WEL

is a union of weighted
relation setsWEI

l :

SI
WEL

=
⋃

l∈L

WEI
l

Assuming the relation set independent hypothesis, the relation sets are
disjoint. We have:

⋂

l∈L

WEI
l = ∅
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Definition 3 and7 are important as they provide the generality of our visual
graph model. As pointed out earlier, the visual graph can integrate smoothly
different image points of views, as well as the relations among them. Moreover,
extracting visual concepts and spatial relation from imagecontent is a difficult
task (like in text retrieval domain). Visual concepts and relations are sometimes
defined in a subjective way. Therefore, the independence hypotheses based on the
concept sets and relation sets have been stated clearly to facilitate our proposition
of graph retrieval in the next section.

Finally, the set of concept setsSI
WCF

and the set of relation setsSI
WEL

are
mapped to the set of nodes and the set of arcs respectively, inour graph-based
framework. The following is the definition of visual graph for imageI.

Definition 9 Given a set of weighted concept setsSI
WCF

and a set of weighted
relation setsSI

WEL
for an imageI, the visual graphGI is defined by:

GI =< SI
WCF

, SI
WEL

>

The definition of our visual graph model provides a general framework which
allows us to derive to different graph instances. Dependingon the visual contents
of image, for example: outdoor scenary, building or indoor photos, we can create
different visual graph instances to fit the image content in this graph framework.
In the next section, we will present two graph examples used in our experiments.

5.2.2 Graph instance 1

In this section, we illustrate how the visual graph model is constructed from
one concept set and two relation sets. This graph instance isused in our
experiment with the STOIC-101 image collection. Most of the photos are captured
famous scenes of Singapore landmarks and are mostly outdoors. We build the
concept set based on the patch-based division and extract the color information
from these patches. We denote this concept set asCcolor = {c1, c2, c3, ..., cN},
whereN are the number of concept defined for this visual vocabulary.

Nevertheless, spatial information embedded in these photos is an important
factor. Firstly, these photos were taken for touristic purposes. Most of the
photos are centered with the main object. Second, images aremostly in portrait
or landscape mode. Therefore, the vertical and horizontal information are very
useful clues for recognizing of the image content. For example, the sky is
above the buildings, trees are next to the statue, river is below the bridge etc.
For these reasons, we decide to choose two type of spatial relations, denoted
L = {left of, top of}, extracted from the concept setCcolor. Theleft of indicates
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Figure 5.2: Example of a visual graph extracted from STOIC image collection.
Concepts are represented by nodes and spatial relations are expressed by directed
arcs. Nodes and arcs are weighted by the number of times they appear in the
image.

the horizontal relation between a pair of concepts. In the same way, thetop of
indicates the vertical relation between a pair of concepts.

Figure5.2shows an example of the visual graph constructed from an image of
a bridge scene. This example corresponds to a visual graph containing one visual
concept setCcolor and two intra-relation setsEleft of andEtop of . The visual graph
for an imageGI =< SI

WCF
, SI

WEL
> is composed of:

• The set of concept set contains one weighted concept setWCcolor extracted
from color feature, denotedSI

WCL
= WCcolor. In the figure, each node

corresponds to a concept and the number of time it occurs in the image.
For example, conceptc1 appeared 3 times in the image and is denoted by
(c1, 3), conceptc2 appeared 2 times in the image and is denoted by(c2, 2)
etc.

• The set of relation setSI
WEL

contains two intra-relation setsEleft of and
Etop of extracted from two spatial relationsl1 = left of andl2 = top of ,
denoted bySI

WEL
= WEleft of

⋃

WEtop of . The relation between a couple
of concepts is captured by the directed arcs in this graph. Precisely, the
blue arcs express the relationleft of and the green arcs express the relation
top of between two concepts. For example, conceptc1 is related to concept
c2 with the relationtop of 2 times and is related to itself by the relation
left of 2 times. It is denoted by(c1, c2, top of, 2) and(c1, c1, left of, 2).

5.2.3 Graph instance 2

The second example is a graph instance extracted from two concept sets
and one relation set. The idea is to integrate different image representations
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(such as patch division and keypoints as described in chapter 2) together with
their relations to represent a unique view of image contents. Image patches
are characterized by a set of visual features, such as color features and edge
features. These features capture the global information ofthe objects. On the
other hand, the visual feature extracted from keypoints represent the details of
the objects. We denote two concept sets asCpatch = {p1, p2, p3, ..., pN} and
Csift = {s1, s2, s3, ..., sM}, whereN,M are the number of visual concepts
defined for each visual vocabulary. The co-occurrence information between two
concept set is denoted by the relationL = {inside} if one keypoint is localized
inside the area of an image patch.

Figure 5.3: Example of a visual graph extracted from two different visual concept
sets and related by a set of relationinside.

Figure5.3shows an example of an image and the corresponding visual graph
constructed. The above graph example corresponds to a visual graph containing
two visual concept setsCpatch, Csift and one inter-relation setEinside. The visual
graph for an imageGI =< SI

WCF
, SI

WEL
> is then composed of:

• The set of concept set contains two weighted concept setsWCpatch and
WCsift extracted from color and edge features and SIFT features, denoted
SI
WCF

= WCpatch

⋃

WCsift. In the figure, the set of node above
corresponds to a concept setCpatch and the set of node below corresponds to
a concept setCsift. For each node, the weight is calculated by the number
of time its occurrence in the image. For example, concepts1 of concept set
Csift appeared 5 times in the image and is denoted by(s1, 5). Conceptp2 of
concept setCpatch appeared 2 times in the image and is denoted by(p2, 2)

• The set of relation set contains a weighted inter-relation setsWEinside ex-
tracted from two concept setsCpatch andCsift, denotedSI

WEL
= WEinside.

Similar to above, the relation between a couple of concepts is also captured
by the directed arcs in this graph. For example, concepts1 is linked to
conceptp1 with the relationinside for 1 times and is related to concept
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p2 for 2 times. These relations are denoted by(s1, p1, inside, 1) and
(s1, p2, inside, 2).

After defining the representation for graphs, we turn to the problem of
matching a query graph with the document graphs. The language model defined
over the conceptual graph proposed in [Maisonnasseet al.2009] is considered
only one concept set and one relation set in the same time. In the next section
we will explain how we extend this framework to take into account of multiple
concept sets and multiple relation sets in our visual graph matching method.

5.3 Graph matching for image retrieval

For a new image query, our objective is to provide the relevant photos from the
collection that match the user needs. Inspired by the information retrieval theory,
we define here three models:

• Document graph modelGId is extracted from the document imageId in
the collection.

• Query graph modelGIq is constructed for a new query imageIq with the
same configuration as the document graph model.

• Matching model M(GIq, GId) includes a ranking function that computes
the probability for generating query graph modelGIq from the document
graph modelGId.

Figure 5.4 provides the common diagram for image indexing and retrieval
process in our graph-based model. First, we generate for theset of image
documents in the collection a set of corresponding graphs. These models are then
stored in our database for matching purpose. A graph model isalso constructed
for the image query. Then, the matching model takes into account of both
query graph model and document graph model to compute the similarity of these
graph models. Finally, images are ranked based on their similarity values of the
document graph models.

5.3.1 Query likelihood ranking

Inspired by the language modeling approach proposed in Section 3.3, the
matching modelM(GIq, GId) ranks the image documents based on the probabil-
ity of generating the query graph model from the document graph models, which
is defined by:

M(GIq, GId) = rankId∈C{P (GIq|GId), Id} (5.1)
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User

?

Query graph
model (Gq)

Graph Indexing

Document graph
models (Gd)

Query image (Iq)

Document images (Id)

Graph Retrieval

Matching
Model (M)

Image Ranking

Figure 5.4: Flowchart for graph indexing and graph retrieval in our system.

This is a generative model in the sense that the probability of query graph
generation is measured based on the probability taken from the document graph
model. The probabilityP (GIq|GId) indicates how likely the document graphGId

is close to the query graphGIq. In [Maisonnasseet al.2009], the probabilityP
has been calculated for a conceptual unigram model. However, our graph model
is composed of multiple concept sets, as well as, multiple relation sets. To expand
this framework, we present here an extension of the matchingmodelM that
handles both set of concept sets and set of relation sets.

In other words, the probability for a query graph modelGIq =< SIq
WCF

, SIq
WEL

>

to be generated from a document graphGId is composed of the probability of
generating independently the set of concept set and the set of relation set. Using
the conditional probability rule, this can be written as:

P (GIq|GId) = P (SIq
WCF

, SIq
WEL

|GId)

= P (SIq
WCF

|GId)× P (SIq
WEL

|SIq
WCF

, GId) (5.2)
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whereP (SIq
WCf

|GId) is the probability of generating set of concept sets from the

document graph, andP (SIq
WEl

|SIq
WCf

, GId) is the probability of generating set of

relation set given the set of concept setSIq
WCf

from the document graphGId.
To calculate this score, we will estimate separately the twoprobabilities: the
probability of generating concept set and probability of generating relation set.

5.3.2 Matching of weighted concept set

For generating the probability of query concept sets from the document
modelP (SIq

WCf
|GId), we assume a concept set independence hypothesis (related

explanation in section5.2). The probability can thus be estimated as:

P (SIq
WCF

|GId) =
∏

WCf
Iq∈SIq

WCF

P (WCf
Iq|GId) (5.3)

Assumingconcept independencewhich is standard in information retrieval, the
number of occurrences of the concepts (i.e., the weights considered previously)
are integrated through the use of amultinomialdistribution model. We compute
P (WCf

Iq|GId) as follows:

P (WCf
Iq|GId) =

(
∑

c #(c, Iq))!
∏

c#(c, Iq)!

∏

c∈Cf

P (c|GId)#(c,Iq)

where#(c, Iq) denotes the number of times conceptc occurs in the query graph
GIq. This contribution corresponds to the unigram conceptual probability as
proposed in [Maisonnasseet al.2009].

The proportion in the above equation will not affect the ranking of the
document images for the given query imageIq. By omitting the constant valueα,
the equation leads to:

P (WCf
Iq|GId) ∝

∏

c∈Cf

P (c|GId)#(c,Iq) (5.4)

To calculate this score, we need to estimate the probabilitiesP (c|GId) from the
document graph model. The maximum likelihood estimate would be:

P (c|GId) =
#(c, Id)

#(|D|, Id)

where the quantity#(c, Id) represents the number of timesc occurs in the
document imageId. The quantity#(|D|, Id) is the total number of concept in
the document image and equal to

∑

c #(c, Id).
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The major problem with this probability estimation is that if any of the
concepts in the query image is missing from the document, theprobability of
P (WCf

Iq|GId) will be zero(as refered in section3.3). Consequently, the score
given by the query likelihoodP (GIq|GId) becomeszero probability. This is
clearly not appropriate for ranking this type of image whileit should have a small
value instead. To avoid this bottleneck, the quantityP (c|GId) is estimated through
maximum likelihood usingJelinek-Mercer smoothing:

P (c|GId) = (1− λf )P (c|GId) + λfP (c|C)

= (1− λf )
#(c, Id)

#(|D|, Id) + λf
#(c, C)

#(|C|, C)
(5.5)

whereλf is the smoothing parameter for each concept setCf . Similarly, the
quantities#(c, C) and#(|C|, C) are defined over the whole collectionC (i.e.,
over the union of all images in the collection).

We choose to use theJelinek-Mercer smoothingfor its simplicity and its
proved effectiveness in the text retrieval domain. In general, the parameterλf

can depend on the nature of the document such as the used visual feature, image
category, etc. In our case, this parameter can be optimized using a validation set
or a cross-validation technique.

In order to respect the consistency of multinomial distribution, the probabili-
ties of the concepts must sum to one, i.e.

∑

c P (c|GId) = 1 . It’s been proved
that theJelinek-Mercer smoothingrespects this prior condition. To illustrate, we
consider a simple example with only 3 concepts,c1, c2 andc3, in the concept set.
Supposing that the probabilities for these concepts in the document graph are 0.6,
0.4 and 0.0. The probabilities estimated for these conceptsin the collection are
0.3, 0.5 and 0.2. Given a smoothing value, for exampleλf = 0.2, the smoothed
probability for the document graph are:

P (c1|GId) = 0.6× (1− λf ) + 0.3× λf = 0.54

P (c2|GId) = 0.4× (1− λf ) + 0.5× λf = 0.42

P (c3|GId) = 0.0× (1− λf ) + 0.2× λf = 0.04

Note that conceptc3 has zero probability. Even though, the smoothed probability
of conceptc3 has non-zero score thanks to the background probability estimated
from the collection. In the end, we get:

∑

c

P (c|GId) = P (c1|GId) + P (c2|GId) + P (c3|GId)

= 0.54 + 0.42 + 0.04

= 1.0
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which confirms that the probabilities using Jelinek-Mercersmoothing method are
consistent.

5.3.3 Matching of weighted relation set

As shown in the previous section, we follow a similar processfor generating
the probability of the relation sets from document graph model. Assuming the
relation set independence (cf. section5.2), this leads to:

P (SIq
WEL

|SIq
WCF

, GId) =
∏

WEIq
l

∈SIq
WEL

P (WEIq
l |SIq

WCF
, GId) (5.6)

For the probability of generating query relation set from the document graph,
we assume that a relation depends only on the two linked concept sets. Assuming
that the relation sets are conditionally independent according to the set of concept
setSIq

WCF
and the graph documentGId, and following amultinomial distribution

model, we can compute:

P (WEIq
l |SIq

WCF
, GId) =

(
∑

(c,c′,l) #(c, c′, l, Iq))!
∏

(c,c′,l) #(c, c′, l, Iq)!
×

∏

(c,c′,l)∈Cf×Cf ′×L

P (L(c, c′) = l|WCIq
f ,WCIq

f ′ , G
Id)#(c,c′,l,Iq)

where the quantity#(c, c′, l, Iq) is the number of time the relationl of concept
pair (c, c′) appears in the query graphGIq.

Similar to the concept set, the first proportion in the above equation will not
affect the final ranking. By eliminating the constant value, this equation leads to:

P (WEIq
l |SIq

WCf
, GId) ∝ (5.7)

∏

(c,c′,l)∈Cf×Cf ′×L

P (L(c, c′) = l|WCIq
f ,WCIq

f ′ , G
Id)#(c,c′,l,Iq)

wherec ∈ Cf , c′ ∈ Cf ′ andL(c, c′) are variables which values inL reflects the
possible relation labels betweenc andc′, in this relation set.

Similar to the concept set, the relation set suffers the sameproblem of zero
probability when a relation is missing from the document graph. Hence, the
smoothing technique has been applied for the relation set. The probabilities
P (L(c, c′) = l|WCIq

f ,WCIq
f ′ , GId) are estimated by maximum likelihood with

Jelinek-Mercer smoothingmethod, giving:

P (L(c, c′) = l|WCIq
f ,WCIq

f ′ , G
Id) = (5.8)

(1− λl)
#(c, c′, l, Id)

#(c, c′, |D|, Id) + λl
#(c, c′, l, C)

#(c, c′, |C|, C)
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whereλl is the smoothing parameter for each relation setEl. The quantity
#(c, c′, l, Id) represents the number of times conceptsc and c′ are linked with
label l in the document imageId, and the quantity#(c, c′, |D|, Id) is equal to
∑

l∈L #(c, c′, l, Id). In the same way, this parameter can be optimized by the
cross-validation technique for each relation. Note that ifone of the two concepts
does not appear in the imaged, it yields:

#(c, c′, l, Id)

#(c, c′, |D|, Id) = 0

Again, the quantities#(c, c′, l, C) and#(c, c′, |C|, C) are counted in a similar
way but computed on the whole collectionC (i.e., over the union of all the graphs
from all the documents in the collection).

This graph model is a generalization of the model defined in [Phamet al.2010]
which corresponds to the case where only one concept set is used. In some
special cases, our model corresponds to the standard language model used
in [Phamet al.2009] where relations are not considered (i.e., documents and
queries correspond to multiple bag-of-words model). In thenext section, we will
give an example of graph matching with our graph models.

5.3.4 Graph matching example

For a better understanding of the graph matching function, we provide here a
simple example of matching with three graph models. These graphs are generated
with the graph instance 1 introduced in the previous section. In the figure5.5, G1
andG2 are the document graphs andG is the query graph. Intuitively, graphG1
is closer to the query graphG than the latter.G1 contains the same set of concept
and have similar relation set as query graphG. While,G2 is missing a conceptc4
and have less relation than the query graphG. The collectionC is then defined on
two graphsG1 andG2.

Supposing that the visual graphs are constructed from 4 visual concepts
(c1, c2, c3, c4) and two relations(l1 = left of, l2 = top of). Graph models
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are described as follows:

G1 = < {(c1, 3), (c2, 3), (c3, 2), (c4, 1)};
{(c1, c1, l1, 2), (c2, c3, l1, 2), (c4, c3, l1, 2),
(c1, c2, l2, 1), (c2, c4, l2, 1), (c1, c3, l2, 2), (c3, c3, l2, 2)} >

G2 = < {(c1, 4), (c2, 3), (c3, 2)};
{(c2, c3, l1, 2), (c2, c2, l1, 4), (c1, c2, l2, 2), (c1, c3, l2, 2), (c3, c3, l2, 2)} >

G = < {(c1, 3), (c2, 2), (c3, 2), (c4, 2)};
{(c1, c1, l1, 2), (c2, c2, l1, 1), (c2, c3, l1, 1), (c4, c3, l1, 2),
(c1, c2, l2, 2), (c2, c4, l2, 2), (c1, c3, l2, 1), (c3, c3, l2, 1)} >

c1
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2
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1

top_of, 2top_of, 1
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C

Document graphs
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Figure 5.5: Example of matching graph with our model.G1 andG2 are the
document graphs from collectionC andG is the query graph.

Assuming the multinomial distribution, we calculate the probability likelihood
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for query graph to be generated by the document graphG1:

P (G|G1) =P (c1|G1)3P (c2|G1)2P (c3|G1)2P (c4|G1)2×
P (L(c1, c1) = l1|G1)2P (L(c2, c2) = l1|G1)P (L(c2, c3) = l1|G1)

P (L(c4, c3) = l1|G1)2P (L(c1, c2) = l2|G1)2P (L(c2, c4) = l2|G1)2

P (L(c3, c3) = l2|G1)P (L(c1, c3) = l2|G1)

Assuming a small value of the smoothing parameters (i.e.,λf = λl = 0.2),
the probabilities are estimated with the Jenlinek-Mercer smoothing method. We
calculate the probabilities for each concept, for exampleP (c1|G1), as follows:

P (c1|G1) = (1− 0.2)× P (c1|G1) + 0.2× P (c1|C)

= 0.8× 3/9 + 0.2× 7/18

= 0.344

For estimating the probabilities of the relations, for exampleP (c1, c1, l1|G1) and
P (c1, c2, l2|G1), we have:

P (L(c1, c1) = l1|G1) = (1− 0.2)× P (L(c1, c1) = l1|G1) + 0.2× P (L(c1, c1) = l1|C)

= 0.8× 2/6 + 0.2× 2/12

= 0.3

P (L(c1, c2) = l2|G1) = (1− 0.2)× P (L(c1, c2) = l2|G1) + 0.2× P (L(c1, c2) = l2|C)

= 0.8× 2/6 + 0.2× 2/12

= 0.183

Note that the relation(c2, c2, l1|G1) does not appear in the document graph G1.
Although, it still obtain a non-zero probability of 0.067 which has been leveraged
from the collection. The final score for graph G1 is:

P (G|G1) =(0.344)3(1/3)2(2/9)2(0.1)2 × (0.3)2(0.067)(1/3)(0.3)2×
(0.183)2(0.15)2(1/3)(1/3)

P (G|G1) ≈3.377× 10−14

Similar to the graphG1, we calculate the probability likelihood for query
graph to be generated by the document graphG2:

P (G|G2) =P (c1|G2)3P (c2|G2)2P (c3|G2)2P (c4|G2)2×
P (L(c1, c1) = l1|G2)2P (L(c2, c2) = l1|G2)P (L(c2, c3) = l1|G2)

P (L(c4, c3) = l1|G2)2P (L(c1, c2) = l2|G2)2P (L(c2, c4) = l2|G2)2

P (L(c3, c3) = l2|G2)P (L(c1, c3) = l2|G2)
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Also note that the conceptc4 does not appear in the document graphG1. However
it still get a small value of 0.0111 from the collection. The final score for graph
G2 is:

P (G|G2) =(0.433)3(1/3)2(2/9)2(0.011)2 × (0.033)2(0.6)(0.6)(0.033)2×
(0.316)2(0.017)2(1/3)(1/3)

P (G|G2) ≈6.464× 10−20

As we can observe from the above scores, graphG1 obtains a larger score
value compared to graphG2, which is consistent with our initial intuition.

5.4 Ranking with relevance status value

In practice, multiplying many small numbers may lead to numerical precision
problems. Moreover, the multiply operation is considered more costly when com-
pared to the addition operation. As usual in IR, we can use logarithm function to
turn the likelihood score into rank-preserving sum. As donein [Phamet al.2009],
the relevance status value (RSV) of a document imageId for query image
Iq is computed in the log-probability domain. In the context ofmultinomial
distributions, we have:

RSVlog(G
Iq|GId) = logP (GIq|GId)

= log(P (SIq
WCF

|GId)× P (SIq
WEL

|SIq
WCF

, GId))

= logP (SIq
WCF

|GId) + logP (SIq
WEL

|SIq
WCF

, GId)

By submitting the probabilities of the set of concept set and the set of relation set
in equation with the equations5.3and5.6, it leads to:

RSVlog(G
Iq|GId) =

∑

WCF
Iq∈SIq

WCF

logP (WCf
Iq|GId)+

∑

WEIq
l

∈SIq
WEL

logP (WEIq
l |SIq

WCF
, GId)
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Again, by approximating the probabilities of the concept set and the relation set
in the equations5.4and5.8, we get:

RSVlog(G
Iq|GId) ∝

∑

WCf
Iq∈SIq

WCF

∑

c∈Cf

logP (c|GId)#(c,Iq)+

∑

WEIq
l

∈SIq
WEL

∑

(c,c′,l)∈Cf×Cf ′×L

logP (L(c, c′) = l|WCIq
f ,WCIq

f ′ , G
Id)#(c,c′,l,Iq)

∝
∑

WCf
Iq∈SIq

WCF

∑

c∈Cf

#(c, Iq)× logP (c|GId)+

∑

WEIq
l

∈SIq
WEL

∑

(c,c′,l)∈Cf×Cf ′×L

#(c, c′, l, Iq)× logP (L(c, c′) = l|WCIq
f ,WCIq

f ′ , G
Id)

Finally, the probabilities of the concept and relation of the graph document are
estimated using the Jelinek-Mercer smoothing as seen in theprevious sections.

For image categorization, document images are categorizedinto a specific
classes, for example: “person”, “animal”, “nature”, “sport”, etc.Query image
Iq is matched against the document images and then classified into the class of
the closest document imageId given by the following estimate:

class(Iq) = class(argmax
Id∈C

RSVlog(G
Iq|GId)) (5.9)

More details on the classification task will be given in the experiment part of the
next chapter.

5.5 Conclusion

We have presented in this chapter the formulation of the visual graph model
and the graph matching algorithm inspired by the language modeling from
information retrieval. The visual graph is defined from a setof concept sets and
a set of relation sets. The visual concept set is achieved by image segmentation,
feature extraction and by visual concept learning. The relation set is generated
based on the predefined extraction rules. The proposed graphmodel reflects the
modern approach in the contend-based image retrieval, which try to combine
multiple viewpoints of the visual content. This can be done in several ways,
such as vector combination for BoW model or kernel fusion for SVM method.
However, these approaches lack the capacities of integrating efficiently the spatial
information, which is crucial to represent the image content, among the visual
concepts. On the contrary, with our general visual graph framework, one can
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integrate smoothly different types of visual concept and also the spatial relation
among them.

One limitation of this approach is that the relation betweenconcepts is defined
manually and varies depending on the nature of the image collection or application
used. For this reason, two graph instances have been shown with different
configuration that adapted to the visual content. Once again, this also proves the
flexibility and the expendability of our visual graph model.

Section5.3 showed how the document graphs are matched against the query
graph using the extension of the language modeling framework. Indeed, the
matching model not only takes into account a set of concepts but also a multiple
concept sets and a multiple relation sets. We have made several hypotheses in
order to adapt to the specific context of the image. The smoothing technique is also
modified to fit into our visual graph framework. Finally, we have demonstrated an
example of graph matching to illustrate the idea.

The next chapter is dedicated to the application of our proposed approach.
We will present two applications of the image categorization problem. The
first application is a system for scene recognition of the Singapore’s famous
landmarks. Different graph models will be created to take into account of different
visual features. We will also show how the spatial relationsare improving
the accuracy of the recognition process. We also discuss on the aspect of
optimizing the smoothing parameters using the cross-validation technique. The
second application is a self-localizing system of a mobile robot in an indoor
environment. We will show how the graph model has been created to adapt to
different environment conditions (such as light changing,object moving, etc.).
Finally, in both applications we will show that visual graphmodels are actually
performing better than the state-of-the-art SVM methods.
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Chapter 6

Scene Recognition

Imagination is more important than knowledge ...
Albert Einstein

6.1 Introduction

The first application of the theoretical approach is anoutdoor scene recog-
nition system. This work has been done in the context of French-Singaporean
collaboration. This has been partly realized at the Image Perception and Access
lab (IPAL) in Singapore and at the Multimedia Modeling Information Retrieval
(MRIM) team in Grenoble. Part of the project was funded by the Merlion
programme, supported by the French embassy in Singapore.

Figure 6.1: Snap2Tell application is a prototype of an image-based mobile tour
guide [Lim et al.2007].

79
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One application of this scene recognition systems is for mobile touristic scene
identification, called Snap2Tell [Lim et al.2007], developed by IPAL lab. A user
uploads an image taken with a hand-phone and sends it as a query to the Snap2Tell
system. The Snap2Tell system will be able to identify the particular scene and
sends back the tourist information. The Snap2Tell prototype is implemented
as 2-tier architecture: client-server protocol. The client provides a mobile
user interface and has functionalities to capture images and interact with the
server. The client-server protocol is developed for communication over wireless
connection (such as WiFi and GPRS) as depicted in figure6.1.

On the server-side, the recognition system identifies the captured scene,
retrieves and sends back the scene descriptions. The imagesfrom collection
are matched against the user query. Finally, information related to the matched
scenes (i.e. text or audio) will be sent back to the user mobile through the wireless
connections.

In this regard, our works concentrate on developinga good scene recognition
enginewhich needs to address the following challeging issues:

• No prior knowledge of the image content and of the categorization of
objects/scenes;

• Difficulty to separate foreground and background;

• Occlusion and moving objects, for example: people, vehicles, trees, etc.;

• Variation of viewpoint, scale, lighting condition;

• Fast and reliable response to the user query given a limited computing
resources.

6.1.1 Objectives

Our first objective is to build for this specific image collection an adequate
visual graph model that compromises both visual features and spatial relations.
We will show that with the integration of spatial relation, our visual graph model
obtains a better performance versus the standard conceptual model. Moreover, we
will compare the proposed model with the state-of-the-art SVM method on the
image classification.

Second, as user can take one or several images of the same scene and query the
system, we have considered several usage scenarios for training and query: with
single image (I) or with multiple images (S). Therefore, oursecond objective is to
demonstrate that with multiple image queries, which accumulated viewpoints of
the scene, will help to improve significantly the recognition accuracy. Table6.1
summarizes the different scenarios implemented in our experiments.
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Figure 6.2: Different viewpoints of the Merlion statue. User can use single image
or multiple images as a query.

Table 6.1: Summary of experiments on STOIC-101 collection. Ascene (S)
corresponds to a group of images and (I) corresponds to a single query image.

Training by (I) Training by (S)

Query by (I)
√ √

Query by (S)
√ √

Last but not least, we will discuss on how we optimize the smoothing
parameters with 3-fold cross validation on the training set. Comparing to thea
posteriorioptimized methods, we will show that the effect of the cross validation
parameters is not significant. Issues related to technical implementation will also
be discussed.

6.1.2 Outline

In the next section, we will describe the STOIC-101 image collection used
in our experiments. Then, we present the proposed visual graph models adapted
for the image collection in section6.3. The experimental result will be shown in
section6.4 with different impacts of the relation and multiple image queries on
the classification performance. In section6.5, we will discuss on how we used the
cross validation technique on training set to optimize the smoothing parameters.
Finally, we summarize the chapter in section6.6
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Figure 6.3: Images of STOIC-101 collection are taken from different locations
across Singapore [Lim et al.2007].

6.2 The STOIC-101 collection

The Singapore Tourist Object Identification Collection (STOIC) has been
collected for the experimental purpose of the Snap2Tell application. STOIC
collection contains of 3,849 images taken from 101 popular tourist landmarks
in Singapore (mostly outdoor). These images were taken, mainly with consumer
digital cameras in a manner typical of a casual tourist, from3 distances and 4
angles in natural light, with a mix of occlusions and cluttered background to
ensure a minimum of 16 images per scene. Images in the collection are affected by
different weather patterns and different image capturing styles. Figure6.3shows
some example images taken from the STOIC collection. Note that some images
in the collection have been rotated into the correct orientation (for portrait and
landscape layouts).

For experimental purposes, the STOIC-101 collection has been divided into
a training set containing 3,189 images (82.8% of the collection) and a test set
containing 660 images (17.2% of the collection). The average number of images
per class for training is 31.7, and 6.5 for testing respectively. In the test set, the
minimum number of images per class is 1, and the maximum is 21.Table6.2
summarizes some key statistics on the STOIC-101 collection.
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Table 6.2: Statistics of the STOIC-101 collection

Training Test Overall

Number of scenes 101 101 101
Number of images 3189 660 3849
Percentage 82.85% 17.15% 100%
Mean (per scene) 31.57 6.53 38.11
Maximum (per scene) 160 21 181
Minimum (per scene) 5 1 8

6.3 Proposed models

6.3.1 Image modeling

Several studies on the STOIC collection have shown that color plays a
dominant role, and should be preferred to other visual features such as edge
or texture [Lim et al.2007]. Furthermore, color histogram can be easily and
efficiently extracted. For these reasons, we rely only on HSVcolor features in
our experiments. In order to assess the validity of our methodology, we followed
different ways to divide image into regions as proposed in chapter 4 and we
retained:

1. A division of medium grain, where blocks of 10x10 pixels are used, the
center pixel being considered as a representative for the region. We refer to
this division asmg.

2. A patch division where the image is divided into 5x5 regions of equal size.
We refer to this division asgg.

For mg divisions, we used the (H, S, V) values as a feature vector foreach
pixel. Similarly, each patch ingg division is quantized by a HSV histogram
(4 bins/channel) that yields a 64 dimensional vector for each region. We then
clustered the HSV feature vectors of all regions intok = 500 classes withk-
meansclustering algorithm. This results in a hard assignment of each region to
one concept. The set of weighted concepts,WC, is then obtained by counting
how many times a given concept occurs in the image. The choiceof k = 500 is
motivated by the fact that we want a certain granularity in the number of concepts
used to represent an image. With too few concepts, one is likely to miss important
differences between images, whereas too many concepts willtend to make similar
images look different.
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6.3.2 Visual graph models

We refer to the indexing obtained in this way asmg-LM and gg-LM,
respectively for “divisionmgwith automatically induced concepts” and “division
ggwith automatically induced concepts”. For the methodsmg-LMandgg-LM, we
extracted the spatial relations between concepts as mentioned previously:left of
andtop of, and counted how many times two given concepts are related through
a particular relation in order to obtain the weights for our relations. This last step
provides a complete graph representation for images. We will refer to these two
complete methods asmg-VGMandgg-VGM.

Figure 6.4: A visual graph extracted withgg division and two relations
left of, top of from a riverside scene.

Figure6.4 shows an example of visual graph extracted withgg concepts and
the left of, top of relations. To summarize, we have constructed four models
based on the visual concept sets and the relation sets:

1. mg-LM=< WCmg, ∅ >, that used onlymgdivision concepts.

2. mg-VGM=< WCmg,WEleft of

⋃

WEtop of >, that usedmg division
concepts and two intra-relation setsleft of andtop of.

3. gg-LM=< WCgg, ∅ >, that used onlyggconcepts.

4. gg-VGM=< WCgg,WEleft of

⋃

WEtop of >, that usedgg concepts and
two intra-relation setsleft of andtop of.



6.4. Experimental results 85

6.4 Experimental results

To classify query images in the 101 scenes, we used the language model for
visual graphs as mentioned in equation5.9. When there is no relation, as in the
cases ofmg-LMandgg-LM, the termP (Sq

WE|Sq
WC , G

d) = 1 so that only concepts
are taken into account to compare images.

6.4.1 Classification accuracy

The performance of the different methods was evaluated using the accuracy,
per imageand per scene. They are defined as the ratio of correctly classified
images or scenes. More precisely:

Image accuracy=
TPi

Ni

, Scene accuracy=
TPs

Ns

whereTPi andTPs represent the number of images and the number of scenes
(respectively) correctly classified.Ni is the total number of test images (i.e., 660
images), andNs the total number of scenes (i.e., 101 locations).

6.4.2 The impact of multiple training/query images

Table 6.3 shows the results we obtained when using automatically induced
(through clustering) concepts. As one can see, automatically induced concepts
with a medium grain division of the image yields the best results (the difference
with the patch division for the S-I scenario being marginal). Overall, themg
division outperforms thegg division in most of the cases. Especially in the S-
S scenario, themg models obtained the best performance. One possible reason
is that inmg division the number of concepts is far more than the one in thegg
division.

Table 6.3: Impact of spatial relations and multiple training/query images on the
performance (best result for each scenario is in bold, relative improvement over
the method without relations is in parentheses)

Training Query mg-LM mg-VGM gg-LM gg-VGM
I I 0.789 0.794(+0.6%) 0.484 0.551 (+13.8%)
I S 0.822 1.00(+21.6%) 0.465 0.762 (+63.8%)
S I 0.529 0.594 (+12.3%) 0.478 0.603(+26.1%)
S S 1.00 1.00 0.891 0.920 (+3.2%)
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This being said, there is a difference between the I-S and S-Iscenarios:
The system is queried with more information in the I-S scenario than in the S-
I scenario. This difference results in a performance which is, for all methods,
worse for the S-I scenario than for the other ones. We conjecture that this is why
the results obtained for themg-VGMmethod on S-I are not as good as the ones
for I-I. There seems to be a plateau for this scenario around 0.6, a hypothesis we
want to explore in future work.

6.4.3 The impact of the relations

We also assessed the usefulness of spatial relationships bycomparing the
results obtained with the different methods that include ornot such relations.
These results are displayed in Table6.3. As one can note, except for the S-S
scenario with themg division, the use of spatial relations always improves the
accuracy of the classifier. This justifies the framework we developed in section5.3
of language model for visual graphs including automatically induced concepts and
spatial relations among them.

6.4.4 Comparing to the SVM method

In order to confirm the validity of our methods, we have compared the
results with the state-of-the-art method in image categorization such as SVM
classification method (implemented thanks to thelibsvm1). We applied the same
visual features used for graph model in our experiment. The input vector in SVM
classifier is the early fusion of the multiple bag-of-word models. Then, each image
class was trained with a corresponding SVM classifier using radial basis function
(RBF) kernel. To optimize the kernel parameters, we trained SVM classifiers
with 3-fold cross validation on the training set. Finally, these classifiers are used
to classify the new query image.

Similar to above, we refer to the model with only the contribution of concept
as LM and model with the spatial relation as VGM. We choose themgconcepts
as a comparison model.

Table 6.4: Results on categorizing STOIC-101 collections comparing to SVM
method using I-I scenario.

#class SVM LM VGM
STOIC 101 0.744 0.789 (+ 6.0%)0.794(+ 6.3%)

1http://www.csie.ntu.edu.tw/cjlin/libsvm/
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Table6.4 summarizes the results obtained from collection STOIC-101 with
three methods: SVM, LM, and VGM. We can see that in all cases the VGM
outperforms other methods. More precisely, with the integration of spatial relation
into VGM helps improving the accuracy of classical approaches of LM by 6.0%.
Moreover, VGM increases roughly the accuracies of 6.3% comparing to SVM
method. This proves that the proposed methods (LM and VGM) are consistently
performing better than the state-of-the-art SVM.

6.5 Discussion

In this section, we will give some discussion on how we optimizea posteriori
the smoothing parameter based on the test set. We also employed the cross
validation technique on the training set to optimizea priori these parameters.
We will show that the difference in term of parameter values and classification
accuracy is not significant among the two methods.

6.5.1 Smoothing parameter optimization

The results presented above are optimizeda posteriori, i.e., we exhaustively
tested the parameters on the test set to get the best configuration. We vary the
value of each parameter in between[0, 1.0] with the increment of 0.1 for each
step. Then, we test these values against the test set and choose the configuration
which gives the best results. However, this approach overestimates the proposed
algorithms, by giving an upper bound of the evaluation results and not a correct
estimation.

In a way to estimate more precisely the results, we optimizedthe smoothing
parameters on a validation set for themgdivision models because this approach
gives the best results. To achieve this optimization, a 3-fold cross validation
was performed. Once the parameters were optimized for each of the three
training/validation sets, we processed the test set using the whole training set.
This technique is called optimizinga priori of the smoothing parameters.

Table6.5 compare the two techniques mentioned above for parameter opti-
mization. For the modelmg-LM, only the concept smoothing parameterλc has
been tested. We can see that there are only two cases that the optimized parameters
are different, e.g., for the I-I and I-S scenarios. However,the gap between thea
posterioriand thea priori is not significant (with the difference of 0.1).

Similar with the modelmg-VGM, two parametersλc andλl have been tested.
Note that we applied specifically the same parameter valueλl for both relation
left of andtop of as they contribute an equal role in the graph model. We observe
that it obtained almost the same values in all cases, except in the case of I-S
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Table 6.5: Comparison of the smoothing parameters obtained by cross validation
set (a priori) and by test set (a posteriori) with modelmg-LM and modelmg-
VGM. Bold values signify the different cases of the two methods.

Training Query λc λl

a posteriori a priori a posteriori a priori

mg-LM
I I 0.1 0.2 - -
I S 0.8 0.7 - -
S I 0.1 0.1 - -
S S 0.2 0.2 - -

mg-VGM
I I 0.2 0.2 0.3 0.3
I S 0.7 0.7 0.9 1.0
S I 0.1 0.1 0.7 0.7
S S 0.2 0.2 1.0 1.0

scenario with the relation smoothing parameterλl. This proves that the smoothing
parameters obtained with thea posteriorioptimization technique are consistent
compared to thea priori optimization technique.

Table6.6 shows the average (Avg) and standard deviation (Std-dev) ofthe 3
results obtained. The last column of the table exhibits the difference (Diff) in
percentage for the evaluation measurement between the 3-fold results and thea
posteriorioptimization. As shown in the table, the results obtained bythe cross
validation and by a posteriori optimization are very similar. If we focus on the
results of the I-I, S-I and S-S configurations, the differences are smaller than
1%, and for the configuration I-S the 3-fold results are 4.46%lower. So, the
optimization used on the validation sets provides satisfying results for a medium
grain and for automatically defined visual concepts.

Table 6.6: Comparison of the resultsmg-LM-valon 3-fold cross validation, and
percentage of difference in accuracy compared to thea posteriorioptimization
modelmg-LM

Training Query mg-LM mg-LM-val Diff
Avg Std-dev

I I 0.789 0.784 5.8× 10−3 -0.68%
I S 0.822 0.785 5.8× 10−3 -4.46%
S I 0.529 0.529 0.0 0%
S S 1.00 0.990 1.7× 10−2 -0.01%
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We also tested 3-fold cross validation with relationships,as presented in
Table6.7. Here again the results with the cross validations are very close to the
a posteriorioptimized results: the S-I and S-S results are almost equal.A small
difference is observed as in the case of I-I and I-S.

Table 6.7: Comparison of the resultsmg-VGM-valon 3-fold cross validation, and
percentage of difference in accuracy compared to thea posteriorioptimization
modelmg-VGM

Training Query mg-VGM mg-VGM-val Diff
Avg Std-dev

I I 0.794 0.788 6.4× 10−3 -2.64%
I S 1.00 0.939 5.3× 10−2 -6.07%
S I 0.594 0.594 0.0 0%
S S 1.00 0.990 1.7× 10−2 -0.01%

Another conclusion drawn from Tables6.6 and 6.7 is that, with a cross
validation procedure, the usage of relationships still outperforms the results
without relationships: +0.5% for the case I-I, +19.6% for I-S, and +12.3% for
S-I. For the case S-S no improvement is achieved, which is also consistent with
thea posteriorioptimized results.

6.5.2 Implementation

The system is implemented in C/C++ with the LTI-Lib2 and compiled on
a Linux platform. LTI-lib is a well designed and well documented for image
processing library, developed by the Aachen University of Technology. Image
indexing and querying are performed on a computer with 3.0 GHz quad-core
CPU and 8.0 Gb of memory. Training step takes about 2 hours for the whole
training images set from extracting visual features, clustering the concepts and
modeling trained graphs. For the query step, it takes about 0.22 second on average
(or 5 images/second) for computing the likelihood of graph query with all the
graphs stored in database. However, the computation is highly parallelizable given
graph models are stored and are processed independently. Itshows that the graph
matching step is very reliable for image matching comparingto classical graph
matching algorithm.

2http://ltilib.sourceforge.net/
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6.6 Summary

We have shown in this chapter the first application of the visual graph model,
namely theoutdoor scene recognition. The context in which this work has been
realized is to develop a scene recognition engine for the Snap2Tell prototype,
an image-based mobile tourist guide. For this purpose, we have tested our
proposed graph models on the STOIC collection containing of101 famous scenes
of Singapore.

We have proposed different visual graph models in order to adapt to the
specific visual contents of the image collection. The proposed graphs were
constructed based on thecolor conceptsand two spatial relationsleft of and
top of. The results obtained shown that the integration of spatialrelations into
the visual graph model outperformed the standard language model and the SVM
classification which based only on the visual concept. A key strength of the
proposed approach is the possibility of combining several images for training
and for querying. The results have shown clearly an improvement in term of
accuracy of the multiple image queries comparing to that of the single image
query. This also confirmed theflexibility and extenbility of this new graph-
theoretic framework.

Finally, we have discussed the process of optimizing the smoothing parameter
with the cross validation technique. Parallel to thea posteriorioptimizing method
based on the test set, it has shown a very small difference in result with the
parameter optimized withcross validation technique. This fact confirmed the
consistency of the proposedJelinek-Mercer smoothingmethod. In fact, we also
wish to study the cross validating with other smoothing method (such asDirichlet
smoothing) as referred in the state-of-the-art. This should be considered in our
future works. Some details on the implementing of the systemhave also provided
to prove thereliability of the graph-based framework.

In the next chapter, we will present the second application of our method
to the self-localizing of a mobile robot in an indoor environment. Coping with
the specific condition of theindoor and laboratory environment, we experiment
another instance of the proposed graph model. We will show how it can be adapted
to the indoor changes (such as lighting condition, object moving, human involving
and theunknownroom).



Chapter 7

Robot Localization

7.1 Introduction

RobotVision1 track is organized by the ImageCLEF2 evaluation campagin.
The main task is to exploit the location information within aknown environment
of a mobile robot based only on the visual information [Luo et al.2006]. This
chapter focuses on applying the proposed visual graph modeling for the RobotVi-
sion track of the ImageCLEF 2009. This works was partly fundedby the AVEIR3

(Automatic annotation and Visual concept Extraction for Image Retrieval) project,
supported by l’Agence Nationale de la Recherche (ANR).

The challenge was to build a system able to answer the question “Where are
you?” for a mobile robot. The visual system has to determine the topological
localization of a mobile robot based on a sequence of training image. One
difficulty of this task is that the robot has to recognize a room in different
illumination conditions and adapt as the environment changes (such as moving
people or objects, new furniture added over the time, etc.).This might pose a
problem for a visual recognition system as the trained data usually obtained at
a fixed time. Meanwhile, the system has to provide the location of the robot in
real-time and in different time spans (6 months to 20 months)(see figure7.1).

Several classical approaches in computer vision have been proposed for this
problem. In [Pronobiset al.2008], the authors suggested an appearance-based
method using Support Vector Machine (SVM) to cope with illumination and pose
changes. This method achieved a satisfactory performance when considering a
short time interval between training and testing phrases. Other possible approach
is to detect the interest point (such as SIFT, Harris-Laplace, etc.) and do a

1http://www.imageclef.org/2009/robot
2http://www.imageclef.org/
3http://aveir.lip6.fr/

91
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Figure 7.1: Example images from RobotVision’09 collection:(a) training set in
night condition, (b) validation set in sunny condition, (c)test set in unknown
condition, (d) the local area map.

topological matching of these points [Lowe 1999]. This is a simple approach
but quite effective for recognizing some types of non rigid objects (e.g., building,
car, motorbike, etc.). However, this method is heavily based on the quality of the
interest points detected.

In the context of the RobotVision, we have developed an indoorrecognition
system that deals with some specific conditions:

• Small number of images in training set;

• Occlusion and moving objects, for example: people, furniture, object, etc;

• Lighting conditions changes, such as sunny, night and cloudy day;

• Different time span of image collections;

• Unknownenvironments,unknownobjects/classes.
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7.1.1 Objectives

To participate in this competition, we apply our visual language model (VLM)
with the enhancement to cope with specific conditions of thistask. We will show
therobustnessand theadaptabilityof the proposed models with different kind of
image representations as well as different type of visual features. The validating
process helps us to choose the appropriate features for our VLM. The relevance
status value (RSV) proposed in section5.4 will be also employed for ranking
the results. In order to enhance the classification quality,we will perform some
post-processing of the ranked results based on their relevance values. We will
also provide the official results of our runs submitted to theImageCLEF 2009
campaign.

The visual graph model (VGM) with the addition of spatial relation to
the VLM was done after the competition. However, VGMs have shown a
clear improvement comparing to the VLMs. We will show that the impact on
different room accuracies provedstability of the VGM. Finally, we compare both
approaches (VLM and VGM) with the SVM method for image classification.

7.1.2 Outline

Next section describes the IDOL2 image collection used in for the RobotVi-
sion experiments. Then, we present the proposed visual graph models adapted
for this image collection in section7.3. The experimental results will be shown
in section7.4with different impacts of the relation and of the room classification
accuracies. We also give a comparison of the proposed model with the SVM
method. Section7.5 discusses how we used the validation set to choose the
appropriate features for representing the image contents.The post-processing
step and the official results of the run submitted will also bedetailed. Finally,
we conclude this chapter in section7.6.

7.2 The IDOL2 collection

The RobotVision collection consists of a subset of the IDOL2 database4. The
image sequences in the IDOL2 database were captured with a Canon VC-C4
perspective camera with the resolution of 320x240 pixels, mounted on a mobile
robot platform. The robot was manually driven through roomswhile continuously
acquiring images (see figure7.2). The acquisition was performed in a five room
of a laboratory environment and oneunknownroom for test set. These rooms
was captured under three different illumination conditions: in cloudyweather, in

4http://cogvis.nada.kth.se/IDOL2/
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sunnyweather, and atnight. Each of the rooms represented a different functional
area, annotated as follows:

• CR - corridor

• PA - printer area

• KT - kitchen

• BO - one person office

• EO - two persons office

• UK - unknownroom from test set

Figure 7.2: Path of the robot doing acquisition of one of the image sequences

The acquisition process was conducted in two phases. Training and validation
sequences were acquired for each type of illumination conditions over the time
span of 6 months. Therefore, the sequences captured variability introduced not
only by illumination but also natural activities in the environment (e.g., moving
people, furniture relocated etc.). The test sequences wereacquired in the same
environment but performed 20 months after the acquisition of the training set. Test
sequences contain an additional room that was not captured in the training and
validation sets. Examples of images showing the interiors of the rooms, variations
of activities and changing of illumination condition are presented in Figure7.3.
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Figure 7.3: Example images from IDOL2 collection: (a) variation of illumination
changing, (b) variation over time span.

For experimental purpose, the RobotVision collection consists of three image
sets: training set, validation set and test set. Training set contains a sequence of
1,034 images and validation set contains a sequence of 909 images. Training and
validation sets consist of five rooms across a span of 6 months. The official test
was released as a sequence of 1,690 images with an additionalroom and recorded
20 months later.

7.3 Proposed models

The system we used for the RobotVision competition was composed of two
processes: a recognition step and a post-processing step. However, we describe
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and evaluate here only the recognition step, in such a way to assess the impact of
the proposed model. The post-processing step of the resultswill be discussed in
the section7.5.2. The robot was trained with a sequence of images taken in the
night condition. Then, we used a validation set captured in sunny condition to
estimate the system parameters.

7.3.1 Image modeling

As described in chapter4, the concept sets and relation sets were extracted
from the image collection as follows:

1. Each image was divided into 5x5 patches. We extracted for each patch a
HSV color histogram and an edge histogram as in section4.2. Then, the
visual vocabulary of 500 visual concepts was constructed byusing k-means
clustering algorithm. From this vocabulary, we built the weighted concept
setWCpatch.

2. Similar to the previous step except that the visual features were extracted
from the local keypoints. To be more precise, we detected scale invariant
keypoints using SIFT detector [Lowe 2004] for each images. Local features
were then used to create the weighted concept setWCsift.

3. Using the two previous features we defined an inter-relation set{inside}
between patch concepts and SIFT concepts, denoted asWEinside, if one
key-point is locatedinside the area of a corresponding patch.

7.3.2 Visual graph models

Similar to above, we referred to the model without relation as LM (simply the
production of probability generated by different concept sets) and the graph model
with the spatial relation as VGM (with the contributing of relation probability to
graph model). Based on this definition, we have implemented several graphs to
measure the performance of our proposed model:

1. LMP =< WCpatch, ∅ >, that used only patch concepts.

2. LMS =< WCsift, ∅ >, that used only SIFT feature concepts.

3. LMS.P =< WCsift

⋃

WCpatch, ∅ >, that used both patch and SIFT feature
concepts.

4. V GMS→P =< WCsift

⋃

WCpatch,WEinside >, that used patch concepts,
SIFT feature concepts and theinside relations between them.
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Figure 7.4: Graph model constructed for RobotVision includes two type of image
representation and one type of relation.

Figure7.4gives an example of the graph extracted from the concept setsand
relation sets defined above. In fact, the first three models were estimated following
the equation presented in section5.3.2. The fourth model is the fusion graph
combined with spatial relation. Its probability was computed according to the
equation defined in section5.3.3.

7.4 Experimental results

7.4.1 Evaluation methods

The image sequences used in the competition were annotated with ground
truth. The annotations of the training and validation sequences were available to
the participants, while the ground truth for the test sequence was released after the
results were announced. Each image in the sequences was labeled according to
the position of the robot during acquisition as belonging toone of the rooms used
for training or as an unknown room. The ground truth was then used to calculate
a score indicating the performance of an algorithm on the test sequence. We have
applied two methods for the evaluating of the system performance.

Room accuracy In order to compare our method with other classical ap-
proaches and for the validation purpose, we also adopt the evaluation based on
the classification accuracy as proposed for STOIC collection (section6.4.1). This
measurement is computed as follows:

Room accuracy=
TProom

Nroom

whereTProom represents the number of images correctly classified for thespecific
room. Nroom is the total number of images annotated for this room (i.e., 1034
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images for corridor CR) in the test collection.

Recognition score (official measurement)
The recognition score measured the differences between theactual room id

and the one classified by the systems. The following rules were used when
calculating the official score for a test sequence:

• +1.0 pointsfor each correctly classified image

• -0.5 pointsfor each misclassified image

• 0 points for unclassified image (the algorithm refrained from the decision)

This score is more strict in the sense that the robot will get penalty point (-0.5
point) for an uncorrected guest. Each participant has to decide their strategy to
adapt to this specific context. Similar to the room accuracy,higher score means
higher accuracy.

7.4.2 Impact of the spatial relation

Table 7.1 describes the results in terms of score value for each model.As
expected, the two basic modelsLMP and LMS gave a good score for the
validation set. However, the modelLMP did not perform well on the test set due
to the introduction of new room and new arrangement of interior furniture. The
simple fusion modelLMS.P underperformed the best results ofLMP andLMS.
However, this result was more robust in the sense that it leveraged on the spurious
effects of each visual feature (i.e.,LMS.P outperformed the averaged result of
LMP andLMS in both cases). Moreover, the introduction ofinside relations
to the completed graphV GMS→P boosted its results respectively by 39.5% and
40.1% comparing to the fusion graphLMS.P for both validation set and test set.
This fact confirmed that the integration of relations playeda significant role to
improve the results. In addition, it showed that the link between object details and
its global presentation provides a better abstraction for image content.

Table 7.1: Recognition scores of different graph models

Graph model LMP LMS LMS.P VGMS→P

Validation 345 285 334.5 466.5(+39.5%)
Test 80.5 263 209.5 293.5(+40.1%)
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7.4.3 Impact on room classification

We present in detail the classification accuracies for each class (represented
by its room id) as categorized by our algorithms in Table7.2. For each class, the
accuracy is computed by the number of correctly labeled images divided by the
total number of images belonging to this class. Note that we only consider the
classification accuracies of 5 rooms as we did not treat theunknownroom in the
test sequence at this step. The post-processing step of the results will be discussed
in the section7.5.2.

Generally, the graph model for SIFT conceptsLMS performs better than the
graph model for patch conceptsLMP . This leads us to conclude that the details
of object are important clues for scene recognition. In addition, the simple fusion
modelLMS.P tried to leverage the effect on both modelLMS andLMP and
improved the results only in the case of two-person office (EO). All four models
gave good accuracies for the corridor (CR) regardless of brutal changes in light
conditions. We also noted that the number of training imagesfor corridor (CR)
was the highest (483/1034 images) comparing to other classes. It suggests that the
higher the number of image samples, the more robust the performance is.

Table 7.2: Classification accuracies of graph models for eachroom. Bold values
indicate the best results obtained for each class.

BO CR EO KT PA Mean

Validation set
LMP 0.257 0.779 0.524 0.450 0.434 0.489
LMS 0.354 0.658 0.581 0.426 0.402 0.484
LMS.P 0.398 0.679 0.613 0.519 0.426 0.527
V GMS→P 0.416 0.829 0.702 0.550 0.492 0.598

Test set
LMP 0.163 0.701 0.385 0.236 0.279 0.353
LMS 0.331 0.721 0.478 0.5090.348 0.477
LMS.P 0.206 0.756 0.484 0.410 0.286 0.428
V GMS→P 0.369 0.736 0.540 0.516 0.344 0.501

As a whole, the visual graph with spatial relationsV GMS→P led to higher
accuracies in all cases except in the cases of corridor (CR) andprinter area (PA)
in test set. However, the difference was not significant comparing to other models
(only 2% less than theLMS.P graph model). Furthermore, the mean accuracy of
modelV GMS→P achieved on the test set and the validation set were the best of
four models, with more than 7% better than the simple fusion modelV GMS.P .
This result confirms again the strength of spatial relationships that contributed to
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our graph model.

7.4.4 Comparing to SVM method

Similar to above, we refer to the model with only the contribution of concept
as LM and model with the spatial relation as VGM. For RobotVision collection,
we choose the modelLMS.P as LM andV GMS→P as VGM.

Table 7.3: Results on categorizing with different methods

#class SVM LM VGM
Validation 5 0.535 0.579 (+ 8.2%)0.675(+ 26.2%)

Test 6 0.439 0.416 (– 5.2%)0.449(+ 22.8%)

Table 7.3 summarizes the results obtained from collection RobotVision’09.
We can see that in all cases our VGMs outperform other methods. More precisely,
with the integration of spatial relation into VGM helps to improve the accuracy of
classical LM approaches by more than 8%. The LMs perform roughly similar to
the SVMs. Likewise, VGMs increase sharply the accuracies from 22.8% to 26.2%
comparing to those of SVMs for both the test and validation sets respectively.
Once again, this fact confirms that if we can integrate the relation in a smart way,
it could increase the overall performance of the recognition systems.

7.5 Discussion

In this section, we will discuss on how we choose the visual features for
generating the language model based on the validations setswith different weather
conditions. Then we will describe the post processing step for enhancing the
quality of the results. Finally, we report the result of our submissions to the official
evaluation ImageCLEF campaign.

7.5.1 Validation process

The validation aims at evaluating robustness of the algorithms to visual
variations that occur over time due to the changing conditions and human activity.
We trained our system with the night condition set and testedagainst all the other
conditions from validation set. Our objective is to understand the behavior of
our system with the changing conditions and with different types of features.
Moreover, the validation process can help us to fine-tune themodel parameters
that the latter will be used for the official test.
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We built 3 different language models corresponding with 3 types of visual
features. The training set used isnight set. Model Mc and Me correspond to
color histogram and edge histogram extracted from image with the division of
5x5 patches. Model Ms corresponds to SIFT color feature extracted from interest
points. We measure the precision of system using the accuracy rate. Summary of
the results is reported in Table7.4.

Table 7.4: Results obtained on different conditions with 3 visual language models

Training Validation HSV(Mc) Edge(Me) SIFT color(Ms)

Night Night 84.24% 59.45% 79.20%
Night Cloudy 39.33% 58.62% 60.60%
Night Sunny 29.04% 52.37% 54.78%

We noticed that, under the same condition (e.g. night-night), the HSV color
histogram Mc outperformed all the other models. However, under different
conditions, the result of this model dropped significantly (from 84% to 29%).
It showed that the color information is very sensitive with the changing of
illumination condition. On the other hand, the edge model (Me) and the SIFT
color model (Ms) are practically robust with the changing ofthe illumination
condition. In the worst condition (night-sunny), we still obtained a quite good
recognition rate of 52% for Me and 55% for Ms. As the result, edge histogram
and SIFT feature are chosen as the appropriate features for our recognition system.

7.5.2 Post-processing of the results

For the official evaluation, the algorithm must be able to provide information
about the location of the robot separately for each test image (obligatory task)
(e.g. when only some of the images from the test sequences areavailable).
This corresponds to the problem of global topological localization. However,
results can also be reported for the case when the algorithm is allowed to exploit
continuity of the sequences and rely on the test images acquired before the
classified image (optional task). The reported results will be compared separately
for each task.

We have performed some fine-tuning steps of these results in order to enhance
the accuracy of our system. Figure7.5shows the flowchart of the post-processing
of the results come from different models. This flowchart includes four main
functions:

1. Linear fusion: we take the advantage of the different features extracted
from the images. We represent an image by a set of concept setsCi
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Figure 7.5: Post-processing steps of the results. Blue scheme is for the obligatory
track and red scheme is the for optional track

and eachCi corresponds to a visual feature. Assuming the concepts sets
independence, we fuse the relevance status values (RSV) fromthe ranked
list of the individual concepts sets using sum operator:

RSV (Q,D) =
∑

i

RSV (qi, di) (7.1)

whereQ = {qi} andD = {di} are the set of concept sets corresponding
to the query image and to the document image respectively. This step
corresponds to the visual graph fusion with the absent of therelation as
developed in the above section.

2. Regrouping by room id: On the basis that using only the closest image
to determine the room id of a query image is not enough, we proposed to
group the results of the n-best images for each room. We compute a ranked
list of roomRL instead of an image list:

RL = {R,RSV (Q,R)} (7.2)

with

RSV (Q,R) =
∑

fn−best(Qj ,R)

RSV (Q,D) (7.3)

whereR correspond to a room andfn−best is a function that select then
images with the best RSV belonging to the roomR.
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3. Filtering the “unknown” room : we measured a difference from the score
of the 4th room to the 1st room in the room list RL. If the difference is big
enough (> thresholdβ) we keep this image. Otherwise we remove it from
the list (or consider as an ”unknown” room). In our experiment, we choose
the valueβ = 0.003 as a threshold.

4. Smoothing window: we exploited the continuity in a sequence of images
by smoothing the result in the temporal dimension. To do that, we use a
smoothing window sliding on the classified image sequences.Here, we
choose the width of windoww = 40 (i.e. 20 images before and after the
classified image). So, the score of the smoothed image is the mean value of
their neighborhood images.

RSVwindow(Qi, R) =

∑

j∈[j−w/2;j+w/2] RSV (Qj, R)

w
(7.4)

wherew is the width of the smoothing window. In the real case, we could
only use a semi smoothing window which considers the images before the
current classified image. This leads to:

RSVsemi−window(Qi, R) =

∑

j∈[j−w;j] RSV (Qj, R)

w
(7.5)

wherew is the width of the semi-window.

Below is the result for the post-processing step (see Table7.5) based on the
ranked lists provide by two models Me and Ms from the validation process. The
training and validation conditions used for post-processing are innight andsunny
respectively.

Table 7.5: Result of the post-processing step based on 2 models Me and Ms

Me Ms Fusion Regrouping Filtering Smoothing
n− best = 15 β = 0.003 w = 20

52.37 % 54.78 % 62% 67% 72% 92%

As we can see, the linear fusion of these 2 models gives overall of 8% of
improvement. The regrouping step helped to pop-up some prominent rooms from
the score list by averaging fromn-bestroom’s scores. The filtering takes part in
eliminating some of the uncertain decisions base on the difference of their score
after the regrouping step. Finally, the smoothing step (which is an optional step)
helps to increase significantly the performance of a sequence of images by 20%.
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7.5.3 Submitted runs to the ImageCLEF 2009

Participating in this competition, we have built 3 graph models based on the
previous validating process. We eliminated the HSV histogram model because of
its poor performance on different lighting conditions. We used the same visual
vocabulary of 500 visual concepts generated for night condition set. Each model
provided a ranked result corresponding with the test sequence released. The post-
processing steps were performed similar to the validating process employing the
same configuration. The visual language models built for thecompetition are
listed as follows:

• Me1: visual language model based on edge histogram extracted from 10x10
patches division

• Me2: visual language model based on edge histogram extracted from 5x5
patches division

• Ms: visual language model based on color SIFT local features

Based on the 3 visual models constructed, we have submitted 5 runs to the
ImageCLEF evaluation:

• 01-LIG-Me1Me2Ms: linear fusion of the results coming from 3 models
(Score = 328)

• 02-LIG-Me1Me2Ms-Rk15: re-ranking the result of 01-LIG-Me1Me2Ms
with the regrouping of top 15 scores for each room (Score = 415)

• 03-LIG-Me1Me2Ms-Rk15-Fil003: if the result of the 1st and the 4th in
the ranked list is too small (i.e.β <0.003), we remove image that from the
list. We refrain the decision from some cases other than to mark them as
unknown room (Score = 456.5)

• 04-LIG-Me1Me2Ms-Rk2-Diff20: re-ranking the result of 01-LIG-Me1Me2Ms
with the regrouping of top 2 scores for each room and using smoothing
window (20images/frame) to update the room-id from image sequences
(Score = 706)

• 05-LIG-Me1Ms-Rk2-Diff20 : same as 04-LIG-Me1Me2Ms-Rk2-Diff20
but with the fusion of 2 model Me1 and Ms (Score = 697)

Our best run03-LIG-Me1Me2Ms-Rk15-Fil003 for the obligatory track is
ranked at10th place among all the 21 runs submitted. The best run in the
competition (score = 793 points) was obtained with an approach based on local
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feature matching. Run04-LIG-Me1Me2Ms-Rk2-Diff20 had not met the criteria
of the optional task which only used the sequence before the classified image.
Nevertheless, this run has increased by roughly 250 points from the best obligatory
run. It means that we still have room to improve the performance of our systems
with the valid smoothing window.

7.6 Summary

To summarize, we have shown in this chapter the second application of the
visual graph model, namelymobile robot self-localization. Coping with the
specific condition of anindoor laboratory environment, we have implemented
another instance of the proposed graph model. The proposed visual graph models
have to adapt to the specific visual contents of the image collection, as well as
adapt to the environment changes (such as lighting condition, object moving,
human involving and theunknownroom).

We have constructed different graph models based onpatch conceptsandSIFT
conceptswhich represented the abstract form and the object details respectively.
A particular relation between the two concepts is also included to capture the
co-occurrence information among the concepts. The resultsobtained shown that
the integration of spatial relations into the visual graph model outperformed the
standard language model and the SVM classification which based only on the
visual concept.

We have also performed a validation process based on the validation sets
to choose the best visual features adapting to the environment changes. Post-
processing step of the ranked list was also studied. Finally, we provided the
official results of our submitted run to the ImageCLEF 2009 forum.

In the next chapter, we will conclude our thesis and give someperspectives
into the future works.
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Chapter 8

Conclusions and Perspectives

We are not interested in the unusual, but in the usual seen unusually.

Beaumont Newhall

Content-Based Image Retrieval (CBIR) has been an open problem for the past
two decades. Several attempts have been made to overcome theinformation
gap between low-level visual features and the semantics layer of image. In
[Marr 1982], Marr proposed a common paradigm for designing a visual recog-
nition system which includes three sub-modules:image processing, mappingand
high-level interpretation. Our works aimed at solving the two latter problems.

In this thesis, we have introduced a graph-based model for representing image
content which added an intermediate layer to image representation. This graph
captured the spatial relations among visual concepts associated with extracted
regions of images. The graph matching process is based on theextension of
unigram conceptual modeling, proposed initially in [Maisonnasseet al.2008].
Theoretically, our model fits within the language modeling approach for infor-
mation retrieval, and expands previous proposals for graph-based representation.

Even though we have chosen to illustrate the proposed approach with the scene
recognition problems, this method is not fundamentally tied to a specific type of
images. The designed framework can be extended for several types of image
representations, as well as several applications in different fields, such as,image
retrieval/annotation, object recognition, video classification/categorization, or
medical imaging classification. This list, by all means, is not exhautive. As
suggested by Nicolas Maillot, the combination with a reasoning layer or an
ontology network [Maillot 2005] will equippe the graph model with the capacity
of understanding the scenic contents. The system is then able to detect multiple
object instances embeded in a particular scene, e.g, car, people, building, street ...

109
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8.1 Summary

We summarize here some main points mentioned in this dissertation:

Part I introduced the current state-of-the-art in the Content-Based Image Retrieval
field.

In chapter2, we gave a survey on different methods of image processing such
as: image decomposition and visual features extraction. This is a basic step in
representing of the image contents. Based in the extracted visual fetures, thebag-
of-wordsmodel has been introduced. The bag-of-words model often represents
image content by a sparse vector of visual concepts. Images are matched based
on the Euclidean distances or the cosine similarity of the quantized vectors. The
bag-of-words model is simple but lacks the information on the spatial relations
between visual concepts.

In chapter3, we reviewed two principal branches of learning methods based
on the conceptual representation:generative approachesand discriminative
approaches. Important approaches, such as, Naive Bayes, Language Modeling,
Support Vector Machines, have also been introduced. Then, we discussed on the
need of embedding the structural information of visual concepts into a graph-
based image representation. We also investigated some current graph matching
algorithms and their limitations. Finally, an initial proposal of the graph-based
image retrieval framework was sketched.

Part II described the proposed approach based on thegraph-based image
representationand agenerative matching algorithm.

In chapter4, we presented the system architecture for the graph-based image
modeling. This framework included three main stages:image processing, graph
modelingandgraph retrieval. The image processing stepaims at extracting the
different visual features from image regions to build a set of visual vocabularies.
The graph modeling stepconsists of visual concepts construction and spatial
relation extraction. Each image is then represented by a corresponding visual
graph. Finally, thegraph retrieval stagegenerates the probabilities likelihood for
the query image from the trained graphs in the database. Images are ranked based
on their relevance values.

Chapter5 defined formally the visual graph model based on a set of concept
sets and a set of relation sets. Two instances of the visual graph models were
used to illustrate the adaptability of the latter to the realapplications. Then, we
showed how the document graphs are matched against the querygraph using the
extension of the language modeling framework. For better understanding, we have
demonstrated with an intuitive example of graph matching. Finally, we showed
how visual graphs were actually ranked in the log-probability space.
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Part III demonstrated the proposed approach inPart II with two applications:
scene recognitionand robot localization. These experimentations aimed at
assessing the validity of our approach in certain aspects. We have conducted the
test on two image collections: STOIC-101 and RobotVision’09.

In chapter6, the consideration of regions and associated concepts allows
us to gain generality in the description of images, a generality which may
be beneficial when the usage of the system slightly differs from its training
environment. This is likely to happen with image collections that, for example,
use one or several images to represent a scene. The proposed model able
to adequately match images and sets of images represented bygraphs. As
we conjectured, being able to abstract from a low level description enables
robustness with respect to the usage scenarios. On the otherhand, querying a
specific location with a group of images is very promising forfuture applications
(such as mobile localization services) that allows higher accuracy score with
less computational effort comparing to video sequence. In addition, the way
of combining different image representations/features inthe graph framework is
more versatile comparing to other fusion approaches. On theexperimental side,
we have proved a positive impact of the relations, as well as of multiple image
queries. We also discussed on the smoothing parameter optimization with a cross
validation technique based on the training image set.

In chapter7, we showed that integrating inter-relations between two different
concept sets to represent images led to a significant improvement in the results.
We hoped that the combination of the two different image representations (such
as patch and keypoints) can take advantage of the different visual features of
both the abstract-level of the scene as well as the details ofthe objects. The
strength of our approach is that this fusion-like model can be expressed naturally
through the links of graph-based model. The experimental results confirmed
the superiority of the visual graph model comparing to the conceptual modeling
approach. We also showed that the graph models performed better than the state-
of-the-art SVM method for image classification. Finally, the proposed approach
has been validated and submitted to the ImageCLEF for the evaluation.

8.2 Contributions

From the point of view of agraph-based framework, the major contributions
of our approach are:

• A well-founded graph representation for image retrieval. We have
presented a unified graph-based framework for image representation which
is able to integrate different types of visual concepts and spatial relations
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among them. Such graph can represent different image point of views in a
very flexible way. Indeed, the visual graph model representsan intermediate
layer of image representation that could fill thesemantic gapbetween high-
level knowledge and visual concepts.

• A simple and effective graph matching process. We have extended
the language model in infomation retrieval for graph matching. The
language modeling has been studied extensively for text retrieval and
proved its effectiveness. Standing from this well-foundeness framework,
our proposed method allowed matching of complex graph composed of
multiple concept setsandmultiple relations sets. This can be done under
certain independence hypotheses of the concept sets and relation sets.
Furthermore, we used theJelinek-Mercer smoothing method, which is
a popular approximation technique for re-estimating of theprobability
distribution.

• Application to the problem of image categorization. We have shown how
the proposed approach can be applied to the problem ofscene recognition
androbot localization. Different graph instances have been developed for
each application to adapt to the image contents. The experimental results
performed on two image collections (STOIC-101 and RobotVision) have
confirmed the good performance and the effectiveness of the visual graph
modeling. Moreover, the proposed method also outperformedboth the
standard language modeling and the state-of-the-art SVM methods. The
results obtained show a promising direction for the image categorization.

8.3 Future works

Our objectives aim at designing a graph-based framework which gains the
capable ofgenerality, re-usabilityandexpendabilityin different contexts. In the
future, several aspects can be considered to extend our visual graph model.

8.3.1 Short-term perspectives

Integration of textual information for multimedia retriev al/annotation
First of all, as the language model is coming from textual domain, we could

combine the graph representation of image with the graph representation of the
annotated text as done in ImageCLEF photographic retrieval track. Hence, multi-
modalities image indexing and retrieval should be a promising direction for the
future model extension.
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In our case, the integration should be done smoothly as they shared the
same probabilistic framework. The conceptual language modeling has been
investigated successfully in [Maisonnasseet al.2009] with the use of UMLS
(Unified Medical Language System) for conceptual relation extraction in medical
document retrieval. Therefore, we wish to fuse these two approaches in the same
graph-based framework in order to enhance the system performance.

Moreover, the common framework between textual/visual graph makes it pos-
sible to learn the mutual information for each text category/ image topic. Similar
to [Phamet al.2007], the proposed graph can be used for image annotation with
the COREL image collection. For each image topic, we can train arepresentative
graph for a set of visual graphs with a specific classifier (for example SVM
classifier). Then, this representative graph can be used forclassifying of the new
images with the associating annotations.

The need of further study on visual concepts and spatial relations
In chapter4, we have shown that the choice of visual concepts and relations

are subjective. Hence, the future work should include more types of visual
concepts and their relations and study the effect of these concepts and relations
on the accuracy. Then the selection of good visual features (using LSA
techniques to eliminate thesynonymy/polysemyeffects on the visual concepts)
and spatial relations can be processed. This should be adapted following a
specific image context or towards a typical scenario of the application. We also
wish to investigate different possible couplings of the low-level and high-level
representations, with the hope to come up with a single representation that could
be used in a general case.

Study the impact on the number of visual concepts
Another technical issue that we would like to address is the choice of number

of clusters for visual concept learning. This number might affect the quality of the
constructed visual concepts. Actually, this parameter hasbeen chosen empirically
and fixed for each application. As done in [Pham 2006], a practical study on this
aspect is needed for subsequent step of building visual graph models.

Evaluation of the proposed approach for object/video retrieval
Last but not least, experiment on a large collection of images is necessary to

test thescalability and thestability of the proposed method. In the near future,
the graph-based model can be used to tackle the video retrieval applications
(e.g., TRECVID collection). Moreover, the graph instance proposed in chapter
5 (with the combination of patches and keypoints) seems appropriate for object
classification. Hence, the proposed graph could be applied for VOC challenge
task which comprises of more than 10K images in training and test sets.
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8.3.2 Long-term perspectives

The long-term perspectives of this work cover a broad-rangeof theoretical
extensions, as well as the practical aspects, for example: integration of an
interactive relevant feedback and a prototype user-interface for retrieval platform.

Relevance feedback modeling using information divergence
Although the query likelihood model has a number of advantages, it is limited

in terms of how it models the user needs. It is difficult to incorporate information
about the relevant documents to a specific query using the current ranking
algorithm. However, it is possible to extend the current query-based model to the
pseudo-relevance feedbackmodel with the measure of divergence between query
models and document models. A well-known measure from information theory is
theKullback-Liebler (KL) divergencewhich measures the difference between two
probability distributions. Hence, the first theoretical aspect we want to address is
to incorporate this measurement in our graph-based framework. Similarly, the KL
divergences should be computed independently for the concept set distributions
and the relation set distribution respectively.

Extension of the current probabilistic framework
As explained in chapter5, the proposed approach relies mainly on the

theoretical assumption that the concept sets and relation sets are following the
multinomial probability distribution. This assumption is widely used for text
retrieval domain where the random variable takes only the discrete values (i.e.,
0, 1, 2...N ). The k-means clustering defines ahard versionof visual concept for
visual vocabulary construction. Thus, the multinomial distribution assumption
still holds true.

However, the visual concepts can be defined differently fromthe textual
concept, for example usingfuzzy c-meansor EM clustering[Moore 1998], which
can create asoft versionof visual concept that is likely to be closer to the
reality. It means that a visual concept might belong to several clusters with
different weights/probabilities. For example, a visual concept could belong
to clusterc1 with a probability of 0.8 and to clusterc2 with a probability of
0.2. In this case, the multinomial probability distribution is no longer valid and
Dirichlet distribution seems more suitable for modeling of the random variable.
As a consequence, the concept independence hypothesis is not correct anymore.
Therefore, one theoretical direction is to extend the current framework with the
Dirichlet probability distribution.

Graph clustering for visual concept navigation
One of the current trends in CBIR system is automatically regrouping image
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into homogenous visual clusters (or sub-topics) for each image topic. In the
ImageCLEF 2009 photo retrieval track, relevant images were asked to be clustered
into sub-topics based on their visual similarities. For example, if a topic asks for
photos of animals, clusters will be formed based on animal type. The objective is
to promote the diversity of image search system. Another example isImage Swirl
system developed by Google labs (see Figure8.1) that automatically estimates
the image clusters based on their visual appearances (apparently using color and
shape information) of photos for the textual queries.

Figure 8.1: Photo clusters for the query “Eiffel tower” based on their visual
appearances (Google Image Swirl).

This function enables users a quicker way to browse and visualize the result
of searched images. Therefore, we would like to address thisproblem within our
graph-based framework by performing a“graph clustering” algorithm on a set
of visual graph. This can be done thanks to the pre-computed similarity values
between pairs of image graphs.

Towards a sketchable user interface (UI) for graph retrieval
With the current proposal, the image search system allows users to query

the image collection using an image (or a group of images). There is a system
that allows user to express their ideas by drawing any shape and picking colors
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from a limited selection, such as Retrievr1 system (see Figure8.2). One possible
direction for the graph-based framework application is that we can design an UI
that allows user to generate their own visual graph providing a set of annotated
visual concepts from the visual vocabulary and a set of relations. Concept and
relation can be assigned with a weight/probability based ontheir importance.
Finally, users can arrange these inputs to form a visual graph/subgraph and query
it against the visual graph database.

Figure 8.2: Retrievr’s user interface allows user retrieving photos by drawing a
simple sketch.

Finally, we believe that the work achieved in this thesis as well as the future
works will allow to create image retrieval systems withbetter quality, easier to
extendandmore interactive.

1http://labs.systemone.at/retrievr/
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